Av(1243, 1432, 2134, 2341, 3214)
View Raw Data
Generating Function
\(\displaystyle -\frac{\left(x +1\right) \left(x^{6}-5 x^{5}+7 x^{4}-3 x^{3}+4 x^{2}-3 x +1\right)}{\left(x -1\right) \left(x^{2}+1\right) \left(x^{3}-x^{2}-2 x +1\right)}\)
Counting Sequence
1, 1, 2, 6, 19, 47, 104, 235, 534, 1204, 2704, 6077, 13661, 30700, 68981, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x -1\right) \left(x^{2}+1\right) \left(x^{3}-x^{2}-2 x +1\right) F \! \left(x \right)+\left(x +1\right) \left(x^{6}-5 x^{5}+7 x^{4}-3 x^{3}+4 x^{2}-3 x +1\right) = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 47\)
\(\displaystyle a \! \left(6\right) = 104\)
\(\displaystyle a \! \left(7\right) = 235\)
\(\displaystyle a \! \left(n +2\right) = a \! \left(n \right)-a \! \left(n +1\right)-2 a \! \left(n +4\right)+a \! \left(n +5\right)-4, \quad n \geq 8\)
Explicit Closed Form
\(\displaystyle \frac{3407 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{6}-2 Z^{5}+Z^{3}-2 Z^{2}+3 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n +4}\right)}{2366}-\frac{283 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{6}-2 Z^{5}+Z^{3}-2 Z^{2}+3 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n +3}\right)}{169}-\frac{3209 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{6}-2 Z^{5}+Z^{3}-2 Z^{2}+3 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n +2}\right)}{2366}+\frac{1753 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{6}-2 Z^{5}+Z^{3}-2 Z^{2}+3 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{1-n}\right)}{2366}-\frac{6525 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{6}-2 Z^{5}+Z^{3}-2 Z^{2}+3 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n}\right)}{2366}+\frac{1902 \left(\underset{\alpha =\mathit{RootOf} \left(Z^{6}-2 Z^{5}+Z^{3}-2 Z^{2}+3 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n -1}\right)}{1183}-\left(\left\{\begin{array}{cc}-2 & n =0 \\ 1 & n =1 \\ 0 & \text{otherwise} \end{array}\right.\right)\)

This specification was found using the strategy pack "Point Placements" and has 70 rules.

Found on January 18, 2022.

Finding the specification took 1 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 70 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{4}\! \left(x \right) &= x\\ F_{5}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{13}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{14}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{16}\! \left(x \right)+F_{19}\! \left(x \right)\\ F_{15}\! \left(x \right) &= 0\\ F_{16}\! \left(x \right) &= F_{17}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{16}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{20}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{21}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{16}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{23}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{24}\! \left(x \right)+F_{63}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{25}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{37}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{30}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{29}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{31}\! \left(x \right)+F_{35}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{32}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{33}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{11}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{36}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{18}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{38}\! \left(x \right)+F_{43}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{39}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{4}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{41}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{42}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{2}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{44}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{4}\! \left(x \right) F_{45}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{46}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{47}\! \left(x \right)+F_{54}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{4}\! \left(x \right) F_{48}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{49}\! \left(x \right)+F_{51}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{4}\! \left(x \right)+F_{50}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{31}\! \left(x \right)+F_{34}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{41}\! \left(x \right)+F_{52}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{53}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{4}\! \left(x \right) F_{46}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{4}\! \left(x \right) F_{55}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{56}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{57}\! \left(x \right)\\ F_{57}\! \left(x \right) &= F_{4}\! \left(x \right) F_{58}\! \left(x \right)\\ F_{58}\! \left(x \right) &= F_{59}\! \left(x \right)\\ F_{59}\! \left(x \right) &= F_{4}\! \left(x \right)+F_{60}\! \left(x \right)\\ F_{60}\! \left(x \right) &= F_{61}\! \left(x \right)\\ F_{61}\! \left(x \right) &= F_{4}\! \left(x \right) F_{62}\! \left(x \right)\\ F_{62}\! \left(x \right) &= F_{17}\! \left(x \right)\\ F_{63}\! \left(x \right) &= F_{4}\! \left(x \right) F_{64}\! \left(x \right)\\ F_{64}\! \left(x \right) &= F_{55}\! \left(x \right)+F_{65}\! \left(x \right)\\ F_{65}\! \left(x \right) &= F_{46}\! \left(x \right)+F_{66}\! \left(x \right)\\ F_{66}\! \left(x \right) &= F_{67}\! \left(x \right)\\ F_{67}\! \left(x \right) &= F_{4}\! \left(x \right) F_{68}\! \left(x \right)\\ F_{68}\! \left(x \right) &= F_{69}\! \left(x \right)\\ F_{69}\! \left(x \right) &= x^{2}\\ \end{align*}\)