Av(1243, 1342, 3241)
Generating Function
\(\displaystyle -\frac{7 x^{5}-22 x^{4}+33 x^{3}-24 x^{2}+8 x -1}{\left(-1+x \right) \left(x^{3}-3 x^{2}+4 x -1\right) \left(2 x -1\right)^{2}}\)
Counting Sequence
1, 1, 2, 6, 21, 75, 262, 891, 2964, 9700, 31374, 100639, 320949, 1019396, 3228687, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(-1+x \right) \left(x^{3}-3 x^{2}+4 x -1\right) \left(2 x -1\right)^{2} F \! \left(x \right)+7 x^{5}-22 x^{4}+33 x^{3}-24 x^{2}+8 x -1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 21\)
\(\displaystyle a \! \left(5\right) = 75\)
\(\displaystyle a \! \left(n +5\right) = 4 a \! \left(n \right)-16 a \! \left(n +1\right)+29 a \! \left(n +2\right)-23 a \! \left(n +3\right)+8 a \! \left(n +4\right)-1, \quad n \geq 6\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 21\)
\(\displaystyle a \! \left(5\right) = 75\)
\(\displaystyle a \! \left(n +5\right) = 4 a \! \left(n \right)-16 a \! \left(n +1\right)+29 a \! \left(n +2\right)-23 a \! \left(n +3\right)+8 a \! \left(n +4\right)-1, \quad n \geq 6\)
Explicit Closed Form
\(\displaystyle \frac{\left(33 \,2^{\frac{2}{3}} \left(\left(\mathrm{I} \,3^{\frac{1}{3}}-\frac{3^{\frac{5}{6}}}{3}\right) \sqrt{31}+\frac{155 \,\mathrm{I} \,3^{\frac{5}{6}}}{11}-\frac{155 \,3^{\frac{1}{3}}}{11}\right) \left(9+\sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}+1488+282 \,2^{\frac{1}{3}} \left(\left(\mathrm{I} \,3^{\frac{2}{3}}+3^{\frac{1}{6}}\right) \sqrt{31}-\frac{434 \,\mathrm{I} \,3^{\frac{1}{6}}}{47}-\frac{434 \,3^{\frac{2}{3}}}{141}\right) \left(9+\sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}\right) \left(\frac{\left(108+12 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}-\frac{\mathrm{I} \left(36+4 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}} 3^{\frac{5}{6}}}{12}+1+\frac{\left(\left(-\mathrm{I} \sqrt{31}+3\right) 18^{\frac{1}{3}}+9 \,\mathrm{I} \,2^{\frac{1}{3}} 3^{\frac{1}{6}}-3^{\frac{1}{6}} \sqrt{31}\, 2^{\frac{1}{3}}\right) \left(9+\sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}}{24}\right)^{-n}}{20088}+\frac{\left(-33 \,2^{\frac{2}{3}} \left(\left(\mathrm{I} \,3^{\frac{1}{3}}+\frac{3^{\frac{5}{6}}}{3}\right) \sqrt{31}+\frac{155 \,\mathrm{I} \,3^{\frac{5}{6}}}{11}+\frac{155 \,3^{\frac{1}{3}}}{11}\right) \left(9+\sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}+1488-282 \,2^{\frac{1}{3}} \left(\left(\mathrm{I} \,3^{\frac{2}{3}}-3^{\frac{1}{6}}\right) \sqrt{31}-\frac{434 \,\mathrm{I} \,3^{\frac{1}{6}}}{47}+\frac{434 \,3^{\frac{2}{3}}}{141}\right) \left(9+\sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}\right) \left(\frac{\left(108+12 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}+\frac{\mathrm{I} \left(36+4 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}} 3^{\frac{5}{6}}}{12}+1+\frac{\left(\left(\mathrm{I} \sqrt{31}+3\right) 18^{\frac{1}{3}}-9 \,\mathrm{I} \,2^{\frac{1}{3}} 3^{\frac{1}{6}}-3^{\frac{1}{6}} \sqrt{31}\, 2^{\frac{1}{3}}\right) \left(9+\sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}}{24}\right)^{-n}}{20088}+\frac{\left(22 \,2^{\frac{2}{3}} \left(\sqrt{31}\, 3^{\frac{5}{6}}+\frac{465 \,3^{\frac{1}{3}}}{11}\right) \left(9+\sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}+1488-564 \,2^{\frac{1}{3}} \left(3^{\frac{1}{6}} \sqrt{31}-\frac{434 \,3^{\frac{2}{3}}}{141}\right) \left(9+\sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}\right) \left(-\frac{\left(108+12 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}}{6}+1+\frac{\left(3^{\frac{1}{6}} \sqrt{31}\, 2^{\frac{1}{3}}-3 \,18^{\frac{1}{3}}\right) \left(9+\sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}}{12}\right)^{-n}}{20088}-\frac{2^{n} n}{6}-\frac{2^{n +1}}{9}+1\)
This specification was found using the strategy pack "Point Placements" and has 179 rules.
Found on January 18, 2022.Finding the specification took 6 seconds.
This tree is too big to show here. Click to view tree on new page.
Copy 179 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{12}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{12}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{10}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{12}\! \left(x \right) &= x\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{17}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{12}\! \left(x \right) F_{16}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{14}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{19}\! \left(x \right)+F_{21}\! \left(x \right)\\
F_{18}\! \left(x \right) &= 0\\
F_{19}\! \left(x \right) &= F_{12}\! \left(x \right) F_{20}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{17}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{12}\! \left(x \right) F_{13}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{46}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{12}\! \left(x \right) F_{25}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{33}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{27}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{12}\! \left(x \right) F_{29}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{9}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{31}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{12}\! \left(x \right) F_{30}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{34}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{35}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{12}\! \left(x \right) F_{36}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{37}\! \left(x \right)+F_{40}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{38}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{39}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{12}\! \left(x \right) F_{37}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{41}\! \left(x \right)+F_{44}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{42}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{12}\! \left(x \right) F_{43}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{41}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{45}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{12}\! \left(x \right) F_{40}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{103}\! \left(x \right)+F_{18}\! \left(x \right)+F_{47}\! \left(x \right)\\
F_{47}\! \left(x \right) &= F_{12}\! \left(x \right) F_{48}\! \left(x \right)\\
F_{48}\! \left(x \right) &= F_{49}\! \left(x \right)+F_{69}\! \left(x \right)\\
F_{49}\! \left(x \right) &= F_{50}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{50}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{51}\! \left(x \right)+F_{59}\! \left(x \right)\\
F_{51}\! \left(x \right) &= F_{12}\! \left(x \right) F_{52}\! \left(x \right)\\
F_{52}\! \left(x \right) &= F_{53}\! \left(x \right)+F_{56}\! \left(x \right)\\
F_{53}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{54}\! \left(x \right)\\
F_{54}\! \left(x \right) &= F_{55}\! \left(x \right)\\
F_{55}\! \left(x \right) &= F_{12}\! \left(x \right) F_{53}\! \left(x \right)\\
F_{56}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{57}\! \left(x \right)\\
F_{57}\! \left(x \right) &= F_{58}\! \left(x \right)\\
F_{58}\! \left(x \right) &= F_{12}\! \left(x \right) F_{56}\! \left(x \right)\\
F_{59}\! \left(x \right) &= F_{12}\! \left(x \right) F_{60}\! \left(x \right)\\
F_{60}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{61}\! \left(x \right)\\
F_{61}\! \left(x \right) &= F_{62}\! \left(x \right)+F_{65}\! \left(x \right)\\
F_{62}\! \left(x \right) &= F_{63}\! \left(x \right)\\
F_{63}\! \left(x \right) &= F_{12}\! \left(x \right) F_{64}\! \left(x \right)\\
F_{64}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{62}\! \left(x \right)\\
F_{65}\! \left(x \right) &= 2 F_{18}\! \left(x \right)+F_{66}\! \left(x \right)+F_{68}\! \left(x \right)\\
F_{66}\! \left(x \right) &= F_{12}\! \left(x \right) F_{67}\! \left(x \right)\\
F_{67}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{65}\! \left(x \right)\\
F_{68}\! \left(x \right) &= F_{12}\! \left(x \right) F_{61}\! \left(x \right)\\
F_{69}\! \left(x \right) &= F_{46}\! \left(x \right)+F_{70}\! \left(x \right)\\
F_{70}\! \left(x \right) &= 2 F_{18}\! \left(x \right)+F_{71}\! \left(x \right)+F_{93}\! \left(x \right)\\
F_{71}\! \left(x \right) &= F_{12}\! \left(x \right) F_{72}\! \left(x \right)\\
F_{72}\! \left(x \right) &= F_{73}\! \left(x \right)+F_{90}\! \left(x \right)\\
F_{73}\! \left(x \right) &= F_{74}\! \left(x \right)+F_{88}\! \left(x \right)\\
F_{74}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{75}\! \left(x \right)+F_{86}\! \left(x \right)\\
F_{75}\! \left(x \right) &= F_{12}\! \left(x \right) F_{76}\! \left(x \right)\\
F_{76}\! \left(x \right) &= F_{77}\! \left(x \right)+F_{79}\! \left(x \right)\\
F_{77}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{78}\! \left(x \right)\\
F_{78}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{21}\! \left(x \right)+F_{51}\! \left(x \right)\\
F_{79}\! \left(x \right) &= F_{74}\! \left(x \right)+F_{80}\! \left(x \right)\\
F_{80}\! \left(x \right) &= 2 F_{18}\! \left(x \right)+F_{71}\! \left(x \right)+F_{81}\! \left(x \right)\\
F_{81}\! \left(x \right) &= F_{12}\! \left(x \right) F_{82}\! \left(x \right)\\
F_{82}\! \left(x \right) &= F_{41}\! \left(x \right)+F_{83}\! \left(x \right)\\
F_{83}\! \left(x \right) &= 2 F_{18}\! \left(x \right)+F_{81}\! \left(x \right)+F_{84}\! \left(x \right)\\
F_{84}\! \left(x \right) &= F_{12}\! \left(x \right) F_{85}\! \left(x \right)\\
F_{85}\! \left(x \right) &= F_{74}\! \left(x \right)+F_{83}\! \left(x \right)\\
F_{86}\! \left(x \right) &= F_{12}\! \left(x \right) F_{87}\! \left(x \right)\\
F_{87}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{74}\! \left(x \right)\\
F_{88}\! \left(x \right) &= F_{89}\! \left(x \right)\\
F_{89}\! \left(x \right) &= F_{12}\! \left(x \right) F_{73}\! \left(x \right)\\
F_{90}\! \left(x \right) &= F_{83}\! \left(x \right)+F_{91}\! \left(x \right)\\
F_{91}\! \left(x \right) &= F_{92}\! \left(x \right)\\
F_{92}\! \left(x \right) &= F_{12}\! \left(x \right) F_{90}\! \left(x \right)\\
F_{93}\! \left(x \right) &= F_{12}\! \left(x \right) F_{94}\! \left(x \right)\\
F_{94}\! \left(x \right) &= F_{82}\! \left(x \right)+F_{95}\! \left(x \right)\\
F_{95}\! \left(x \right) &= F_{96}\! \left(x \right)+F_{99}\! \left(x \right)\\
F_{96}\! \left(x \right) &= F_{97}\! \left(x \right)\\
F_{97}\! \left(x \right) &= F_{12}\! \left(x \right) F_{98}\! \left(x \right)\\
F_{98}\! \left(x \right) &= F_{41}\! \left(x \right)+F_{96}\! \left(x \right)\\
F_{99}\! \left(x \right) &= 3 F_{18}\! \left(x \right)+F_{100}\! \left(x \right)+F_{102}\! \left(x \right)\\
F_{100}\! \left(x \right) &= F_{101}\! \left(x \right) F_{12}\! \left(x \right)\\
F_{101}\! \left(x \right) &= F_{83}\! \left(x \right)+F_{99}\! \left(x \right)\\
F_{102}\! \left(x \right) &= F_{12}\! \left(x \right) F_{95}\! \left(x \right)\\
F_{103}\! \left(x \right) &= F_{104}\! \left(x \right) F_{12}\! \left(x \right)\\
F_{104}\! \left(x \right) &= F_{105}\! \left(x \right)+F_{87}\! \left(x \right)\\
F_{105}\! \left(x \right) &= F_{106}\! \left(x \right)+F_{140}\! \left(x \right)\\
F_{106}\! \left(x \right) &= F_{107}\! \left(x \right)+F_{138}\! \left(x \right)+F_{18}\! \left(x \right)\\
F_{107}\! \left(x \right) &= F_{108}\! \left(x \right) F_{12}\! \left(x \right)\\
F_{108}\! \left(x \right) &= F_{109}\! \left(x \right)+F_{121}\! \left(x \right)\\
F_{109}\! \left(x \right) &= F_{110}\! \left(x \right)+F_{14}\! \left(x \right)\\
F_{110}\! \left(x \right) &= F_{111}\! \left(x \right)+F_{18}\! \left(x \right)+F_{63}\! \left(x \right)\\
F_{111}\! \left(x \right) &= F_{112}\! \left(x \right) F_{12}\! \left(x \right)\\
F_{112}\! \left(x \right) &= F_{113}\! \left(x \right)+F_{116}\! \left(x \right)\\
F_{113}\! \left(x \right) &= F_{114}\! \left(x \right)+F_{12}\! \left(x \right)\\
F_{114}\! \left(x \right) &= F_{115}\! \left(x \right)\\
F_{115}\! \left(x \right) &= F_{113}\! \left(x \right) F_{12}\! \left(x \right)\\
F_{116}\! \left(x \right) &= F_{117}\! \left(x \right)+F_{119}\! \left(x \right)\\
F_{117}\! \left(x \right) &= F_{118}\! \left(x \right)\\
F_{118}\! \left(x \right) &= F_{12}\! \left(x \right) F_{14}\! \left(x \right)\\
F_{119}\! \left(x \right) &= F_{120}\! \left(x \right)\\
F_{120}\! \left(x \right) &= F_{116}\! \left(x \right) F_{12}\! \left(x \right)\\
F_{121}\! \left(x \right) &= F_{122}\! \left(x \right)+F_{41}\! \left(x \right)\\
F_{122}\! \left(x \right) &= 2 F_{18}\! \left(x \right)+F_{123}\! \left(x \right)+F_{135}\! \left(x \right)\\
F_{123}\! \left(x \right) &= F_{12}\! \left(x \right) F_{124}\! \left(x \right)\\
F_{124}\! \left(x \right) &= F_{125}\! \left(x \right)+F_{130}\! \left(x \right)\\
F_{125}\! \left(x \right) &= F_{126}\! \left(x \right)+F_{128}\! \left(x \right)\\
F_{126}\! \left(x \right) &= F_{127}\! \left(x \right)\\
F_{127}\! \left(x \right) &= F_{12}\! \left(x \right) F_{23}\! \left(x \right)\\
F_{128}\! \left(x \right) &= F_{129}\! \left(x \right)\\
F_{129}\! \left(x \right) &= F_{12}\! \left(x \right) F_{125}\! \left(x \right)\\
F_{130}\! \left(x \right) &= F_{131}\! \left(x \right)+F_{133}\! \left(x \right)\\
F_{131}\! \left(x \right) &= F_{132}\! \left(x \right)\\
F_{132}\! \left(x \right) &= F_{12}\! \left(x \right) F_{41}\! \left(x \right)\\
F_{133}\! \left(x \right) &= F_{134}\! \left(x \right)\\
F_{134}\! \left(x \right) &= F_{12}\! \left(x \right) F_{130}\! \left(x \right)\\
F_{135}\! \left(x \right) &= F_{12}\! \left(x \right) F_{136}\! \left(x \right)\\
F_{136}\! \left(x \right) &= F_{137}\! \left(x \right)+F_{41}\! \left(x \right)\\
F_{137}\! \left(x \right) &= F_{135}\! \left(x \right)\\
F_{138}\! \left(x \right) &= F_{12}\! \left(x \right) F_{139}\! \left(x \right)\\
F_{139}\! \left(x \right) &= F_{106}\! \left(x \right)+F_{23}\! \left(x \right)\\
F_{140}\! \left(x \right) &= F_{141}\! \left(x \right)+F_{176}\! \left(x \right)+F_{178}\! \left(x \right)+F_{18}\! \left(x \right)\\
F_{141}\! \left(x \right) &= F_{12}\! \left(x \right) F_{142}\! \left(x \right)\\
F_{142}\! \left(x \right) &= F_{143}\! \left(x \right)+F_{157}\! \left(x \right)\\
F_{143}\! \left(x \right) &= F_{144}\! \left(x \right)+F_{17}\! \left(x \right)\\
F_{144}\! \left(x \right) &= F_{145}\! \left(x \right)+F_{18}\! \left(x \right)+F_{66}\! \left(x \right)+F_{68}\! \left(x \right)\\
F_{145}\! \left(x \right) &= F_{12}\! \left(x \right) F_{146}\! \left(x \right)\\
F_{146}\! \left(x \right) &= F_{147}\! \left(x \right)+F_{152}\! \left(x \right)\\
F_{147}\! \left(x \right) &= F_{148}\! \left(x \right)+F_{150}\! \left(x \right)\\
F_{148}\! \left(x \right) &= F_{149}\! \left(x \right)\\
F_{149}\! \left(x \right) &= F_{10}\! \left(x \right) F_{12}\! \left(x \right)\\
F_{150}\! \left(x \right) &= F_{151}\! \left(x \right)\\
F_{151}\! \left(x \right) &= F_{12}\! \left(x \right) F_{147}\! \left(x \right)\\
F_{152}\! \left(x \right) &= F_{153}\! \left(x \right)+F_{155}\! \left(x \right)\\
F_{153}\! \left(x \right) &= F_{154}\! \left(x \right)\\
F_{154}\! \left(x \right) &= F_{12}\! \left(x \right) F_{17}\! \left(x \right)\\
F_{155}\! \left(x \right) &= F_{156}\! \left(x \right)\\
F_{156}\! \left(x \right) &= F_{12}\! \left(x \right) F_{152}\! \left(x \right)\\
F_{157}\! \left(x \right) &= F_{158}\! \left(x \right)+F_{83}\! \left(x \right)\\
F_{158}\! \left(x \right) &= 2 F_{18}\! \left(x \right)+F_{159}\! \left(x \right)+F_{171}\! \left(x \right)+F_{174}\! \left(x \right)\\
F_{159}\! \left(x \right) &= F_{12}\! \left(x \right) F_{160}\! \left(x \right)\\
F_{160}\! \left(x \right) &= F_{161}\! \left(x \right)+F_{166}\! \left(x \right)\\
F_{161}\! \left(x \right) &= F_{162}\! \left(x \right)+F_{164}\! \left(x \right)\\
F_{162}\! \left(x \right) &= F_{163}\! \left(x \right)\\
F_{163}\! \left(x \right) &= F_{12}\! \left(x \right) F_{74}\! \left(x \right)\\
F_{164}\! \left(x \right) &= F_{165}\! \left(x \right)\\
F_{165}\! \left(x \right) &= F_{12}\! \left(x \right) F_{161}\! \left(x \right)\\
F_{166}\! \left(x \right) &= F_{167}\! \left(x \right)+F_{169}\! \left(x \right)\\
F_{167}\! \left(x \right) &= F_{168}\! \left(x \right)\\
F_{168}\! \left(x \right) &= F_{12}\! \left(x \right) F_{83}\! \left(x \right)\\
F_{169}\! \left(x \right) &= F_{170}\! \left(x \right)\\
F_{170}\! \left(x \right) &= F_{12}\! \left(x \right) F_{166}\! \left(x \right)\\
F_{171}\! \left(x \right) &= F_{12}\! \left(x \right) F_{172}\! \left(x \right)\\
F_{172}\! \left(x \right) &= F_{173}\! \left(x \right)+F_{83}\! \left(x \right)\\
F_{173}\! \left(x \right) &= 3 F_{18}\! \left(x \right)+F_{171}\! \left(x \right)+F_{174}\! \left(x \right)\\
F_{174}\! \left(x \right) &= F_{12}\! \left(x \right) F_{175}\! \left(x \right)\\
F_{175}\! \left(x \right) &= F_{137}\! \left(x \right)+F_{173}\! \left(x \right)\\
F_{176}\! \left(x \right) &= F_{12}\! \left(x \right) F_{177}\! \left(x \right)\\
F_{177}\! \left(x \right) &= F_{140}\! \left(x \right)+F_{74}\! \left(x \right)\\
F_{178}\! \left(x \right) &= F_{105}\! \left(x \right) F_{12}\! \left(x \right)\\
\end{align*}\)