Av(1243, 1342, 2431, 4123, 4213)
Generating Function
\(\displaystyle \frac{x^{8}+x^{7}-5 x^{6}-5 x^{5}+5 x^{2}-4 x +1}{\left(x^{2}+2 x -1\right) \left(x -1\right)^{3}}\)
Counting Sequence
1, 1, 2, 6, 19, 50, 118, 271, 625, 1460, 3452, 8233, 19743, 47494, 114450, ...
Implicit Equation for the Generating Function
\(\displaystyle -\left(x^{2}+2 x -1\right) \left(x -1\right)^{3} F \! \left(x \right)+x^{8}+x^{7}-5 x^{6}-5 x^{5}+5 x^{2}-4 x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 50\)
\(\displaystyle a \! \left(6\right) = 118\)
\(\displaystyle a \! \left(7\right) = 271\)
\(\displaystyle a \! \left(8\right) = 625\)
\(\displaystyle a \! \left(n +2\right) = -3 n^{2}+a \! \left(n \right)+2 a \! \left(n +1\right)+13 n -5, \quad n \geq 9\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 50\)
\(\displaystyle a \! \left(6\right) = 118\)
\(\displaystyle a \! \left(7\right) = 271\)
\(\displaystyle a \! \left(8\right) = 625\)
\(\displaystyle a \! \left(n +2\right) = -3 n^{2}+a \! \left(n \right)+2 a \! \left(n +1\right)+13 n -5, \quad n \geq 9\)
Explicit Closed Form
\(\displaystyle 4+\frac{\left(\sqrt{2}-1\right)^{-n}}{2}+\frac{\left(-1-\sqrt{2}\right)^{-n}}{2}-\frac{13 n}{2}+\frac{3 n^{2}}{2}+\left(\left\{\begin{array}{cc}-4 & n =0 \\ 1 & n =1 \\ 2 & n =2 \\ 1 & n =3 \\ 0 & \text{otherwise} \end{array}\right.\right)\)
This specification was found using the strategy pack "Point Placements" and has 79 rules.
Found on January 18, 2022.Finding the specification took 1 seconds.
This tree is too big to show here. Click to view tree on new page.
Copy 79 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{4}\! \left(x \right) &= x\\
F_{5}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{13}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{19}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{16}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{18}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{14}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{21}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{25}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{23}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{11}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{19}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{37}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{29}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{33}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{31}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{30}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{34}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{35}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{36}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{27}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{38}\! \left(x \right)+F_{39}\! \left(x \right)+F_{70}\! \left(x \right)\\
F_{38}\! \left(x \right) &= 0\\
F_{39}\! \left(x \right) &= F_{4}\! \left(x \right) F_{40}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{41}\! \left(x \right)+F_{56}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{42}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{38}\! \left(x \right)+F_{43}\! \left(x \right)+F_{46}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{4}\! \left(x \right) F_{44}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{45}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{43}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{4}\! \left(x \right) F_{47}\! \left(x \right)\\
F_{47}\! \left(x \right) &= F_{48}\! \left(x \right)+F_{49}\! \left(x \right)\\
F_{48}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{45}\! \left(x \right)\\
F_{49}\! \left(x \right) &= F_{50}\! \left(x \right)+F_{53}\! \left(x \right)\\
F_{50}\! \left(x \right) &= F_{51}\! \left(x \right)\\
F_{51}\! \left(x \right) &= F_{4}\! \left(x \right) F_{52}\! \left(x \right)\\
F_{52}\! \left(x \right) &= F_{4}\! \left(x \right)\\
F_{53}\! \left(x \right) &= F_{54}\! \left(x \right)\\
F_{54}\! \left(x \right) &= F_{4}\! \left(x \right) F_{55}\! \left(x \right)\\
F_{55}\! \left(x \right) &= F_{23}\! \left(x \right)\\
F_{56}\! \left(x \right) &= F_{37}\! \left(x \right)+F_{57}\! \left(x \right)\\
F_{57}\! \left(x \right) &= F_{58}\! \left(x \right)\\
F_{58}\! \left(x \right) &= F_{4}\! \left(x \right) F_{59}\! \left(x \right)\\
F_{59}\! \left(x \right) &= F_{60}\! \left(x \right)\\
F_{60}\! \left(x \right) &= F_{38}\! \left(x \right)+F_{61}\! \left(x \right)+F_{68}\! \left(x \right)\\
F_{61}\! \left(x \right) &= F_{4}\! \left(x \right) F_{62}\! \left(x \right)\\
F_{62}\! \left(x \right) &= F_{63}\! \left(x \right)+F_{66}\! \left(x \right)\\
F_{63}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{64}\! \left(x \right)\\
F_{64}\! \left(x \right) &= F_{38}\! \left(x \right)+F_{43}\! \left(x \right)+F_{65}\! \left(x \right)\\
F_{65}\! \left(x \right) &= F_{4}\! \left(x \right) F_{48}\! \left(x \right)\\
F_{66}\! \left(x \right) &= F_{60}\! \left(x \right)+F_{67}\! \left(x \right)\\
F_{67}\! \left(x \right) &= F_{58}\! \left(x \right)\\
F_{68}\! \left(x \right) &= F_{4}\! \left(x \right) F_{69}\! \left(x \right)\\
F_{69}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{60}\! \left(x \right)\\
F_{70}\! \left(x \right) &= F_{4}\! \left(x \right) F_{71}\! \left(x \right)\\
F_{71}\! \left(x \right) &= F_{69}\! \left(x \right)+F_{72}\! \left(x \right)\\
F_{72}\! \left(x \right) &= F_{73}\! \left(x \right)+F_{76}\! \left(x \right)\\
F_{73}\! \left(x \right) &= F_{74}\! \left(x \right)\\
F_{74}\! \left(x \right) &= F_{4}\! \left(x \right) F_{75}\! \left(x \right)\\
F_{75}\! \left(x \right) &= F_{31}\! \left(x \right)\\
F_{76}\! \left(x \right) &= F_{77}\! \left(x \right)\\
F_{77}\! \left(x \right) &= F_{4}\! \left(x \right) F_{78}\! \left(x \right)\\
F_{78}\! \left(x \right) &= F_{45}\! \left(x \right)\\
\end{align*}\)