Av(1243, 1342, 2431, 3412, 4132)
Generating Function
\(\displaystyle \frac{3 x^{7}-13 x^{6}+22 x^{5}-38 x^{4}+43 x^{3}-26 x^{2}+8 x -1}{\left(2 x -1\right) \left(x^{2}-3 x +1\right) \left(x -1\right)^{4}}\)
Counting Sequence
1, 1, 2, 6, 19, 53, 135, 330, 800, 1956, 4851, 12199, 31023, 79548, 205168, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(2 x -1\right) \left(x^{2}-3 x +1\right) \left(x -1\right)^{4} F \! \left(x \right)-3 x^{7}+13 x^{6}-22 x^{5}+38 x^{4}-43 x^{3}+26 x^{2}-8 x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 53\)
\(\displaystyle a \! \left(6\right) = 135\)
\(\displaystyle a \! \left(7\right) = 330\)
\(\displaystyle a \! \left(n +3\right) = \frac{n^{3}}{3}-2 n^{2}+2 a \! \left(n \right)-7 a \! \left(n +1\right)+5 a \! \left(n +2\right)-\frac{4 n}{3}+4, \quad n \geq 8\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 53\)
\(\displaystyle a \! \left(6\right) = 135\)
\(\displaystyle a \! \left(7\right) = 330\)
\(\displaystyle a \! \left(n +3\right) = \frac{n^{3}}{3}-2 n^{2}+2 a \! \left(n \right)-7 a \! \left(n +1\right)+5 a \! \left(n +2\right)-\frac{4 n}{3}+4, \quad n \geq 8\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}1 & n =0 \\ \frac{\left(-3 \sqrt{5}+15\right) \left(\frac{3}{2}-\frac{\sqrt{5}}{2}\right)^{-n}}{30}+\frac{\left(3 \sqrt{5}+15\right) \left(\frac{3}{2}+\frac{\sqrt{5}}{2}\right)^{-n}}{30}+\frac{n^{3}}{3}-2 n^{2}+\frac{8 n}{3}\\+2^{n -1}-2 & \text{otherwise} \end{array}\right.\)
This specification was found using the strategy pack "Insertion Point Placements Expand Verified" and has 32 rules.
Found on January 21, 2022.Finding the specification took 6 seconds.
Copy 32 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{8}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{8}\! \left(x \right) &= x\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right) F_{8}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{13}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{12}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{17}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{25}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{19}\! \left(x \right) F_{20}\! \left(x \right) F_{23}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{13}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{21}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{12}\! \left(x \right) F_{20}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{24}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{23}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{31}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{12}\! \left(x \right) F_{27}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{29}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{19}\! \left(x \right) F_{23}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{12} \left(x \right)^{2} F_{6}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{19} \left(x \right)^{2} F_{23}\! \left(x \right)\\
\end{align*}\)
This specification was found using the strategy pack "Insertion Row Placements Expand Verified" and has 42 rules.
Found on January 21, 2022.Finding the specification took 5 seconds.
Copy 42 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{8}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{8}\! \left(x \right) &= x\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right) F_{8}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{13}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{12}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{17}\! \left(x \right)+F_{36}\! \left(x \right)\\
F_{16}\! \left(x \right) &= 0\\
F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{19}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{32}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{22}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{26}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{24}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{23}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{28}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{13}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{29}\! \left(x \right)+F_{31}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{30}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{28}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{26}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{33}\! \left(x \right)+F_{34}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{18}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{35}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{23}\! \left(x \right) F_{27}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{37}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{12}\! \left(x \right) F_{38}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{39}\! \left(x \right)+F_{40}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{23}\! \left(x \right) F_{27}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{41}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{12} \left(x \right)^{2} F_{6}\! \left(x \right) F_{8}\! \left(x \right)\\
\end{align*}\)
This specification was found using the strategy pack "Point And Row Placements Expand Verified" and has 35 rules.
Found on January 21, 2022.Finding the specification took 11 seconds.
Copy 35 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{8}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{8}\! \left(x \right) &= x\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right) F_{8}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{13}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{12}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{16}\! \left(x \right)+F_{29}\! \left(x \right)\\
F_{15}\! \left(x \right) &= 0\\
F_{16}\! \left(x \right) &= F_{17}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{20}\! \left(x \right)\\
F_{18}\! \left(x \right) &= \frac{F_{19}\! \left(x \right)}{F_{8}\! \left(x \right)}\\
F_{19}\! \left(x \right) &= F_{2}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{12}\! \left(x \right) F_{22}\! \left(x \right) F_{27}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{26}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{24}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{12}\! \left(x \right) F_{23}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{13}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{28}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{27}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{12}\! \left(x \right) F_{31}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{33}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{26}\! \left(x \right) F_{27}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{12} \left(x \right)^{2} F_{6}\! \left(x \right) F_{8}\! \left(x \right)\\
\end{align*}\)