Av(1243, 1342, 2431, 3241)
View Raw Data
Generating Function
\(\displaystyle -\frac{3 x^{4}-4 x^{3}+8 x^{2}-5 x +1}{\left(-1+x \right) \left(2 x -1\right) \left(x^{3}-x^{2}+3 x -1\right)}\)
Counting Sequence
1, 1, 2, 6, 20, 65, 202, 606, 1774, 5107, 14534, 41034, 115208, 322193, 898546, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(-1+x \right) \left(2 x -1\right) \left(x^{3}-x^{2}+3 x -1\right) F \! \left(x \right)+3 x^{4}-4 x^{3}+8 x^{2}-5 x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 20\)
\(\displaystyle a \! \left(n +4\right) = -2 a \! \left(n \right)+3 a \! \left(n +1\right)-7 a \! \left(n +2\right)+5 a \! \left(n +3\right)+3, \quad n \geq 5\)
Explicit Closed Form
\(\displaystyle \frac{\left(\left(\left(-108 \,\mathrm{I}-36 \sqrt{3}\right) \sqrt{19}+76 \,\mathrm{I} \sqrt{3}+76\right) \left(1+3 \sqrt{19}\, \sqrt{3}\right)^{\frac{1}{3}}+1216+\left(\left(9 \,\mathrm{I}-3 \sqrt{3}\right) \sqrt{19}+95 \,\mathrm{I} \sqrt{3}-95\right) \left(1+3 \sqrt{19}\, \sqrt{3}\right)^{\frac{2}{3}}\right) \left(\frac{\left(\left(\mathrm{I}+3 \sqrt{19}\right) \sqrt{3}-9 \,\mathrm{I} \sqrt{19}-1\right) \left(1+3 \sqrt{19}\, \sqrt{3}\right)^{\frac{2}{3}}}{384}-\frac{\mathrm{I} \sqrt{3}\, \left(1+3 \sqrt{19}\, \sqrt{3}\right)^{\frac{1}{3}}}{6}-\frac{\left(1+3 \sqrt{19}\, \sqrt{3}\right)^{\frac{1}{3}}}{6}+\frac{1}{3}\right)^{-n}}{7296}+\frac{\left(\left(\left(108 \,\mathrm{I}-36 \sqrt{3}\right) \sqrt{19}-76 \,\mathrm{I} \sqrt{3}+76\right) \left(1+3 \sqrt{19}\, \sqrt{3}\right)^{\frac{1}{3}}+1216+\left(\left(-9 \,\mathrm{I}-3 \sqrt{3}\right) \sqrt{19}-95 \,\mathrm{I} \sqrt{3}-95\right) \left(1+3 \sqrt{19}\, \sqrt{3}\right)^{\frac{2}{3}}\right) \left(\frac{\left(\left(-\mathrm{I}+3 \sqrt{19}\right) \sqrt{3}+9 \,\mathrm{I} \sqrt{19}-1\right) \left(1+3 \sqrt{19}\, \sqrt{3}\right)^{\frac{2}{3}}}{384}+\frac{\mathrm{I} \sqrt{3}\, \left(1+3 \sqrt{19}\, \sqrt{3}\right)^{\frac{1}{3}}}{6}-\frac{\left(1+3 \sqrt{19}\, \sqrt{3}\right)^{\frac{1}{3}}}{6}+\frac{1}{3}\right)^{-n}}{7296}+\frac{\left(\left(72 \sqrt{19}\, \sqrt{3}-152\right) \left(1+3 \sqrt{19}\, \sqrt{3}\right)^{\frac{1}{3}}+6 \left(1+3 \sqrt{19}\, \sqrt{3}\right)^{\frac{2}{3}} \sqrt{19}\, \sqrt{3}+190 \left(1+3 \sqrt{19}\, \sqrt{3}\right)^{\frac{2}{3}}+1216\right) \left(\frac{\left(1+3 \sqrt{19}\, \sqrt{3}\right)^{\frac{1}{3}}}{3}+\frac{1}{3}+\frac{\left(1+3 \sqrt{19}\, \sqrt{3}\right)^{\frac{2}{3}}}{192}-\frac{\left(1+3 \sqrt{19}\, \sqrt{3}\right)^{\frac{2}{3}} \sqrt{19}\, \sqrt{3}}{64}\right)^{-n}}{7296}-2^{n}+\frac{3}{2}\)

This specification was found using the strategy pack "Point Placements" and has 113 rules.

Found on January 18, 2022.

Finding the specification took 2 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 113 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{12}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{12}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{10}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{12}\! \left(x \right) &= x\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{17}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{12}\! \left(x \right) F_{16}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{14}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{19}\! \left(x \right)+F_{21}\! \left(x \right)\\ F_{18}\! \left(x \right) &= 0\\ F_{19}\! \left(x \right) &= F_{12}\! \left(x \right) F_{20}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{17}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{12}\! \left(x \right) F_{13}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{29}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{12}\! \left(x \right) F_{25}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{27}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{12}\! \left(x \right) F_{26}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{30}\! \left(x \right)+F_{81}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{12}\! \left(x \right) F_{31}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{51}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{34}\! \left(x \right)+F_{37}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{12}\! \left(x \right) F_{35}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{36}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{34}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{12}\! \left(x \right) F_{38}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{39}\! \left(x \right)+F_{43}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{40}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{41}\! \left(x \right)+F_{42}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{10}\! \left(x \right) F_{12}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{12}\! \left(x \right) F_{39}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{44}\! \left(x \right)+F_{47}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{45}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{12}\! \left(x \right) F_{46}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{44}\! \left(x \right)\\ F_{47}\! \left(x \right) &= 2 F_{18}\! \left(x \right)+F_{48}\! \left(x \right)+F_{50}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{12}\! \left(x \right) F_{49}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{40}\! \left(x \right)+F_{47}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{12}\! \left(x \right) F_{43}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{29}\! \left(x \right)+F_{52}\! \left(x \right)\\ F_{52}\! \left(x \right) &= 2 F_{18}\! \left(x \right)+F_{53}\! \left(x \right)+F_{71}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{12}\! \left(x \right) F_{54}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{55}\! \left(x \right)+F_{70}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{56}\! \left(x \right)+F_{68}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{12}\! \left(x \right) F_{57}\! \left(x \right)\\ F_{57}\! \left(x \right) &= F_{58}\! \left(x \right)+F_{60}\! \left(x \right)\\ F_{58}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{59}\! \left(x \right)\\ F_{59}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{34}\! \left(x \right)+F_{42}\! \left(x \right)\\ F_{60}\! \left(x \right) &= F_{55}\! \left(x \right)+F_{61}\! \left(x \right)\\ F_{61}\! \left(x \right) &= 2 F_{18}\! \left(x \right)+F_{53}\! \left(x \right)+F_{62}\! \left(x \right)\\ F_{62}\! \left(x \right) &= F_{12}\! \left(x \right) F_{63}\! \left(x \right)\\ F_{63}\! \left(x \right) &= F_{64}\! \left(x \right)+F_{66}\! \left(x \right)\\ F_{64}\! \left(x \right) &= F_{65}\! \left(x \right)\\ F_{65}\! \left(x \right) &= F_{12}\! \left(x \right) F_{23}\! \left(x \right)\\ F_{66}\! \left(x \right) &= 2 F_{18}\! \left(x \right)+F_{62}\! \left(x \right)+F_{67}\! \left(x \right)\\ F_{67}\! \left(x \right) &= F_{12}\! \left(x \right) F_{55}\! \left(x \right)\\ F_{68}\! \left(x \right) &= F_{12}\! \left(x \right) F_{69}\! \left(x \right)\\ F_{69}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{55}\! \left(x \right)\\ F_{70}\! \left(x \right) &= F_{53}\! \left(x \right)\\ F_{71}\! \left(x \right) &= F_{12}\! \left(x \right) F_{72}\! \left(x \right)\\ F_{72}\! \left(x \right) &= F_{63}\! \left(x \right)+F_{73}\! \left(x \right)\\ F_{73}\! \left(x \right) &= F_{74}\! \left(x \right)+F_{77}\! \left(x \right)\\ F_{74}\! \left(x \right) &= F_{75}\! \left(x \right)\\ F_{75}\! \left(x \right) &= F_{12}\! \left(x \right) F_{76}\! \left(x \right)\\ F_{76}\! \left(x \right) &= F_{64}\! \left(x \right)+F_{74}\! \left(x \right)\\ F_{77}\! \left(x \right) &= 3 F_{18}\! \left(x \right)+F_{78}\! \left(x \right)+F_{80}\! \left(x \right)\\ F_{78}\! \left(x \right) &= F_{12}\! \left(x \right) F_{79}\! \left(x \right)\\ F_{79}\! \left(x \right) &= F_{66}\! \left(x \right)+F_{77}\! \left(x \right)\\ F_{80}\! \left(x \right) &= F_{12}\! \left(x \right) F_{73}\! \left(x \right)\\ F_{81}\! \left(x \right) &= F_{12}\! \left(x \right) F_{82}\! \left(x \right)\\ F_{82}\! \left(x \right) &= F_{69}\! \left(x \right)+F_{83}\! \left(x \right)\\ F_{83}\! \left(x \right) &= F_{84}\! \left(x \right)+F_{95}\! \left(x \right)\\ F_{84}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{85}\! \left(x \right)+F_{93}\! \left(x \right)\\ F_{85}\! \left(x \right) &= F_{12}\! \left(x \right) F_{86}\! \left(x \right)\\ F_{86}\! \left(x \right) &= F_{87}\! \left(x \right)+F_{90}\! \left(x \right)\\ F_{87}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{88}\! \left(x \right)\\ F_{88}\! \left(x \right) &= F_{89}\! \left(x \right)\\ F_{89}\! \left(x \right) &= F_{12}\! \left(x \right) F_{87}\! \left(x \right)\\ F_{90}\! \left(x \right) &= F_{64}\! \left(x \right)+F_{91}\! \left(x \right)\\ F_{91}\! \left(x \right) &= F_{92}\! \left(x \right)\\ F_{92}\! \left(x \right) &= F_{12}\! \left(x \right) F_{90}\! \left(x \right)\\ F_{93}\! \left(x \right) &= F_{12}\! \left(x \right) F_{94}\! \left(x \right)\\ F_{94}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{84}\! \left(x \right)\\ F_{95}\! \left(x \right) &= F_{110}\! \left(x \right)+F_{112}\! \left(x \right)+F_{18}\! \left(x \right)+F_{96}\! \left(x \right)\\ F_{96}\! \left(x \right) &= F_{12}\! \left(x \right) F_{97}\! \left(x \right)\\ F_{97}\! \left(x \right) &= F_{104}\! \left(x \right)+F_{98}\! \left(x \right)\\ F_{98}\! \left(x \right) &= F_{40}\! \left(x \right)+F_{99}\! \left(x \right)\\ F_{99}\! \left(x \right) &= F_{100}\! \left(x \right)\\ F_{100}\! \left(x \right) &= F_{101}\! \left(x \right) F_{12}\! \left(x \right)\\ F_{101}\! \left(x \right) &= F_{102}\! \left(x \right)+F_{103}\! \left(x \right)\\ F_{102}\! \left(x \right) &= F_{41}\! \left(x \right)\\ F_{103}\! \left(x \right) &= F_{100}\! \left(x \right)\\ F_{104}\! \left(x \right) &= F_{105}\! \left(x \right)+F_{66}\! \left(x \right)\\ F_{105}\! \left(x \right) &= F_{106}\! \left(x \right)\\ F_{106}\! \left(x \right) &= F_{107}\! \left(x \right) F_{12}\! \left(x \right)\\ F_{107}\! \left(x \right) &= F_{108}\! \left(x \right)+F_{109}\! \left(x \right)\\ F_{108}\! \left(x \right) &= F_{67}\! \left(x \right)\\ F_{109}\! \left(x \right) &= F_{106}\! \left(x \right)\\ F_{110}\! \left(x \right) &= F_{111}\! \left(x \right) F_{12}\! \left(x \right)\\ F_{111}\! \left(x \right) &= F_{55}\! \left(x \right)+F_{95}\! \left(x \right)\\ F_{112}\! \left(x \right) &= F_{12}\! \left(x \right) F_{83}\! \left(x \right)\\ \end{align*}\)