Av(1243, 1342, 2431)
View Raw Data
Generating Function
\(\displaystyle \frac{\left(-6 x^{3}+9 x^{2}-5 x +1\right) \sqrt{1-4 x}-10 x^{4}+24 x^{3}-19 x^{2}+7 x -1}{4 \left(x -\frac{1}{2}\right) x^{2} \left(-1+x \right)^{2}}\)
Counting Sequence
1, 1, 2, 6, 21, 76, 274, 979, 3479, 12351, 43951, 157081, 564409, 2039465, 7410650, ...
Implicit Equation for the Generating Function
\(\displaystyle x^{2} \left(2 x -1\right)^{2} \left(-1+x \right)^{4} F \left(x \right)^{2}+\left(2 x -1\right) \left(10 x^{4}-24 x^{3}+19 x^{2}-7 x +1\right) \left(-1+x \right)^{2} F \! \left(x \right)+25 x^{6}-84 x^{5}+122 x^{4}-95 x^{3}+42 x^{2}-10 x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 21\)
\(\displaystyle a \! \left(5\right) = 76\)
\(\displaystyle a \! \left(6\right) = 274\)
\(\displaystyle a \! \left(n +6\right) = -\frac{24 \left(2 n +3\right) a \! \left(n \right)}{8+n}-\frac{2 \left(104 n +335\right) a \! \left(2+n \right)}{8+n}+\frac{12 \left(13 n +29\right) a \! \left(n +1\right)}{8+n}+\frac{3 \left(49 n +213\right) a \! \left(n +3\right)}{8+n}-\frac{\left(58 n +321\right) a \! \left(n +4\right)}{8+n}+\frac{3 \left(4 n +27\right) a \! \left(n +5\right)}{8+n}+\frac{7}{8+n}, \quad n \geq 7\)

This specification was found using the strategy pack "Row Placements" and has 74 rules.

Found on July 23, 2021.

Finding the specification took 6 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 74 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{11}\! \left(x \right) F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{4}\! \left(x \right)+F_{72}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{11}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{12}\! \left(x \right)+F_{4}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{11}\! \left(x \right) F_{5}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{8} \left(x \right)^{2} F_{11}\! \left(x \right)\\ F_{11}\! \left(x \right) &= x\\ F_{12}\! \left(x \right) &= F_{11}\! \left(x \right) F_{13}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{12}\! \left(x \right)+F_{14}\! \left(x \right)+F_{16}\! \left(x \right)+F_{57}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{11}\! \left(x \right) F_{15}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{12}\! \left(x \right)+F_{14}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{11}\! \left(x \right) F_{17}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{12}\! \left(x \right)+F_{16}\! \left(x \right)+F_{18}\! \left(x \right)+F_{20}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{11}\! \left(x \right) F_{17}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{11}\! \left(x \right) F_{22}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{54}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{40}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{25}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{11}\! \left(x \right) F_{27}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{31}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{29}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{11}\! \left(x \right) F_{28}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{35}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{11}\! \left(x \right) F_{34}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{32}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{36}\! \left(x \right)+F_{37}\! \left(x \right)+F_{39}\! \left(x \right)\\ F_{36}\! \left(x \right) &= 0\\ F_{37}\! \left(x \right) &= F_{11}\! \left(x \right) F_{38}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{29}\! \left(x \right)+F_{35}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{11}\! \left(x \right) F_{31}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{41}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{36}\! \left(x \right)+F_{42}\! \left(x \right)+F_{44}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{11}\! \left(x \right) F_{43}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{41}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{11}\! \left(x \right) F_{45}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{46}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{47}\! \left(x \right)+F_{50}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{48}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{11}\! \left(x \right) F_{49}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{47}\! \left(x \right)\\ F_{50}\! \left(x \right) &= 2 F_{36}\! \left(x \right)+F_{51}\! \left(x \right)+F_{53}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{11}\! \left(x \right) F_{52}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{35}\! \left(x \right)+F_{50}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{11}\! \left(x \right) F_{46}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{55}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{11}\! \left(x \right) F_{34}\! \left(x \right) F_{56}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{25}\! \left(x \right)\\ F_{57}\! \left(x \right) &= F_{58}\! \left(x \right)\\ F_{58}\! \left(x \right) &= F_{11}\! \left(x \right) F_{59}\! \left(x \right)\\ F_{59}\! \left(x \right) &= F_{60}\! \left(x \right)+F_{70}\! \left(x \right)\\ F_{60}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{61}\! \left(x \right)\\ F_{61}\! \left(x \right) &= F_{62}\! \left(x \right)+F_{66}\! \left(x \right)\\ F_{62}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{63}\! \left(x \right)\\ F_{63}\! \left(x \right) &= F_{64}\! \left(x \right)\\ F_{64}\! \left(x \right) &= F_{11}\! \left(x \right) F_{65}\! \left(x \right)\\ F_{65}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{63}\! \left(x \right)\\ F_{66}\! \left(x \right) &= F_{47}\! \left(x \right)+F_{67}\! \left(x \right)\\ F_{67}\! \left(x \right) &= F_{68}\! \left(x \right)\\ F_{68}\! \left(x \right) &= F_{11}\! \left(x \right) F_{69}\! \left(x \right)\\ F_{69}\! \left(x \right) &= F_{63}\! \left(x \right)+F_{67}\! \left(x \right)\\ F_{70}\! \left(x \right) &= F_{71}\! \left(x \right)\\ F_{71}\! \left(x \right) &= F_{34} \left(x \right)^{2} F_{11}\! \left(x \right) F_{27}\! \left(x \right)\\ F_{72}\! \left(x \right) &= F_{11}\! \left(x \right) F_{73}\! \left(x \right)\\ F_{73}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{16}\! \left(x \right)+F_{20}\! \left(x \right)+F_{72}\! \left(x \right)\\ \end{align*}\)