Av(1243, 1342, 2413, 3214, 4132)
View Raw Data
Generating Function
\(\displaystyle \frac{x^{6}-x^{5}-2 x^{4}-3 x^{2}+3 x -1}{3 x^{3}-5 x^{2}+4 x -1}\)
Counting Sequence
1, 1, 2, 6, 19, 53, 134, 328, 801, 1966, 4843, 11945, 29463, 72656, 179144, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(-3 x^{3}+5 x^{2}-4 x +1\right) F \! \left(x \right)+x^{6}-x^{5}-2 x^{4}-3 x^{2}+3 x -1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 53\)
\(\displaystyle a \! \left(6\right) = 134\)
\(\displaystyle a \! \left(n +3\right) = 3 a \! \left(n \right)-5 a \! \left(n +1\right)+4 a \! \left(n +2\right), \quad n \geq 7\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}1 & n =0 \\ 1 & n =1 \\ 2 & n =2 \\ 6 & n =3 \\ \frac{\left(-7781 \,2^{\frac{1}{3}} \left(\left(-\frac{6711 \sqrt{31}}{7781}+\mathrm{I}\right) \sqrt{3}-\frac{20133 \,\mathrm{I} \sqrt{31}}{7781}+1\right) \left(47+9 \sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}+5881568+238700 \,2^{\frac{2}{3}} \left(\left(\frac{507 \sqrt{31}}{10850}+\mathrm{I}\right) \sqrt{3}-\frac{1521 \,\mathrm{I} \sqrt{31}}{10850}-1\right) \left(47+9 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}\right) \left(\frac{47 \left(\left(\mathrm{I}-\frac{9 \sqrt{31}}{47}\right) \sqrt{3}-\frac{27 \,\mathrm{I} \sqrt{31}}{47}+1\right) 2^{\frac{1}{3}} \left(47+9 \sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}}{8712}-\frac{\mathrm{I} \sqrt{3}\, \left(188+36 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}}{36}+\frac{\left(188+36 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}}{36}+\frac{5}{9}\right)^{-n}}{7291944}\\+\\\frac{\left(-238700 \,2^{\frac{2}{3}} \left(\left(-\frac{507 \sqrt{31}}{10850}+\mathrm{I}\right) \sqrt{3}-\frac{1521 \,\mathrm{I} \sqrt{31}}{10850}+1\right) \left(47+9 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}+5881568+7781 \,2^{\frac{1}{3}} \left(\left(\frac{6711 \sqrt{31}}{7781}+\mathrm{I}\right) \sqrt{3}-\frac{20133 \,\mathrm{I} \sqrt{31}}{7781}-1\right) \left(47+9 \sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}\right) \left(-\frac{47 \left(\left(\mathrm{I}+\frac{9 \sqrt{31}}{47}\right) \sqrt{3}-\frac{27 \,\mathrm{I} \sqrt{31}}{47}-1\right) 2^{\frac{1}{3}} \left(47+9 \sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}}{8712}+\frac{\mathrm{I} \sqrt{3}\, \left(188+36 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}}{36}+\frac{\left(188+36 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}}{36}+\frac{5}{9}\right)^{-n}}{7291944}\\-\\\frac{2237 \left(\frac{2^{\frac{1}{3}} \left(9 \sqrt{31}\, \sqrt{3}-47\right) \left(47+9 \sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}}{4356}-\frac{\left(188+36 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}}{18}+\frac{5}{9}\right)^{-n} \left(\frac{3718 \,2^{\frac{2}{3}} \left(\sqrt{31}\, \sqrt{3}-\frac{10850}{507}\right) \left(47+9 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}}{2237}-\frac{2940784}{6711}+2^{\frac{1}{3}} \left(\sqrt{31}\, \sqrt{3}-\frac{7781}{6711}\right) \left(47+9 \sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}\right)}{1215324} & \text{otherwise} \end{array}\right.\)

This specification was found using the strategy pack "Point Placements" and has 84 rules.

Found on January 18, 2022.

Finding the specification took 1 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 84 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{4}\! \left(x \right) &= x\\ F_{5}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{13}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{16}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{18}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{17}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{36}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{23}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{24}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{25}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{27}\! \left(x \right)+F_{35}\! \left(x \right)\\ F_{26}\! \left(x \right) &= 0\\ F_{27}\! \left(x \right) &= F_{28}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{29}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{33}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{31}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{32}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{30}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{29}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{24}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{37}\! \left(x \right)+F_{69}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{38}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{39}\! \left(x \right)+F_{49}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{26}\! \left(x \right)+F_{41}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{4}\! \left(x \right) F_{42}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{43}\! \left(x \right)+F_{44}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{18}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{45}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{4}\! \left(x \right) F_{46}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{47}\! \left(x \right)+F_{48}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{11}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{45}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{50}\! \left(x \right)+F_{60}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{51}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{4}\! \left(x \right) F_{52}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{53}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{50}\! \left(x \right)+F_{54}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{55}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{4}\! \left(x \right) F_{56}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{57}\! \left(x \right)\\ F_{57}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{58}\! \left(x \right)\\ F_{58}\! \left(x \right) &= F_{59}\! \left(x \right)\\ F_{59}\! \left(x \right) &= F_{4}\! \left(x \right) F_{57}\! \left(x \right)\\ F_{60}\! \left(x \right) &= 2 F_{26}\! \left(x \right)+F_{34}\! \left(x \right)+F_{61}\! \left(x \right)\\ F_{61}\! \left(x \right) &= F_{4}\! \left(x \right) F_{62}\! \left(x \right)\\ F_{62}\! \left(x \right) &= F_{63}\! \left(x \right)+F_{64}\! \left(x \right)\\ F_{63}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{58}\! \left(x \right)\\ F_{64}\! \left(x \right) &= F_{65}\! \left(x \right)\\ F_{65}\! \left(x \right) &= F_{4}\! \left(x \right) F_{66}\! \left(x \right)\\ F_{66}\! \left(x \right) &= F_{67}\! \left(x \right)+F_{68}\! \left(x \right)\\ F_{67}\! \left(x \right) &= F_{30}\! \left(x \right)\\ F_{68}\! \left(x \right) &= F_{65}\! \left(x \right)\\ F_{69}\! \left(x \right) &= F_{4}\! \left(x \right) F_{70}\! \left(x \right)\\ F_{70}\! \left(x \right) &= F_{71}\! \left(x \right)+F_{82}\! \left(x \right)\\ F_{71}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{72}\! \left(x \right)\\ F_{72}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{73}\! \left(x \right)+F_{81}\! \left(x \right)\\ F_{73}\! \left(x \right) &= F_{4}\! \left(x \right) F_{74}\! \left(x \right)\\ F_{74}\! \left(x \right) &= F_{75}\! \left(x \right)+F_{78}\! \left(x \right)\\ F_{75}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{76}\! \left(x \right)\\ F_{76}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{26}\! \left(x \right)+F_{77}\! \left(x \right)\\ F_{77}\! \left(x \right) &= F_{4}\! \left(x \right) F_{43}\! \left(x \right)\\ F_{78}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{79}\! \left(x \right)\\ F_{79}\! \left(x \right) &= 2 F_{26}\! \left(x \right)+F_{34}\! \left(x \right)+F_{80}\! \left(x \right)\\ F_{80}\! \left(x \right) &= F_{4}\! \left(x \right) F_{63}\! \left(x \right)\\ F_{81}\! \left(x \right) &= F_{4}\! \left(x \right) F_{71}\! \left(x \right)\\ F_{82}\! \left(x \right) &= F_{50}\! \left(x \right)+F_{83}\! \left(x \right)\\ F_{83}\! \left(x \right) &= F_{55}\! \left(x \right)\\ \end{align*}\)