Av(1243, 1342, 2341, 3412)
Generating Function
\(\displaystyle -\frac{13 x^{6}-59 x^{5}+100 x^{4}-87 x^{3}+41 x^{2}-10 x +1}{\left(x^{2}-3 x +1\right) \left(x -1\right)^{2} \left(2 x -1\right)^{3}}\)
Counting Sequence
1, 1, 2, 6, 20, 66, 209, 633, 1843, 5194, 14262, 38372, 101635, 266035, 690341, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x^{2}-3 x +1\right) \left(x -1\right)^{2} \left(2 x -1\right)^{3} F \! \left(x \right)+13 x^{6}-59 x^{5}+100 x^{4}-87 x^{3}+41 x^{2}-10 x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 20\)
\(\displaystyle a \! \left(5\right) = 66\)
\(\displaystyle a \! \left(6\right) = 209\)
\(\displaystyle a \! \left(n +5\right) = 8 a \! \left(n \right)-36 a \! \left(n +1\right)+50 a \! \left(n +2\right)-31 a \! \left(n +3\right)+9 a \! \left(n +4\right)-n, \quad n \geq 7\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 20\)
\(\displaystyle a \! \left(5\right) = 66\)
\(\displaystyle a \! \left(6\right) = 209\)
\(\displaystyle a \! \left(n +5\right) = 8 a \! \left(n \right)-36 a \! \left(n +1\right)+50 a \! \left(n +2\right)-31 a \! \left(n +3\right)+9 a \! \left(n +4\right)-n, \quad n \geq 7\)
Explicit Closed Form
\(\displaystyle \frac{\left(4 \sqrt{5}+20\right) \left(\frac{3}{2}-\frac{\sqrt{5}}{2}\right)^{-n}}{40}+\frac{\left(-4 \sqrt{5}+20\right) \left(\frac{3}{2}+\frac{\sqrt{5}}{2}\right)^{-n}}{40}+2^{n +1}+\frac{\left(5 n^{2}-45 n \right) 2^{n}}{40}-n -2\)
This specification was found using the strategy pack "Point And Row And Col Placements" and has 50 rules.
Found on January 17, 2022.Finding the specification took 16 seconds.
Copy 50 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{7}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{7}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{7}\! \left(x \right) &= x\\
F_{8}\! \left(x \right) &= F_{48}\! \left(x \right)+F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{26}\! \left(x \right)+F_{27}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{13}\! \left(x \right) F_{7}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{17}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{15}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{14}\! \left(x \right) F_{7}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{21}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{20}\! \left(x \right) F_{7}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{18}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{23}\! \left(x \right)+F_{25}\! \left(x \right)\\
F_{22}\! \left(x \right) &= 0\\
F_{23}\! \left(x \right) &= F_{24}\! \left(x \right) F_{7}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{21}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{17}\! \left(x \right) F_{7}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{5}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{28}\! \left(x \right) F_{7}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{29}\! \left(x \right)+F_{46}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{36}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{31}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{32}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{33}\! \left(x \right)+F_{35}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{34}\! \left(x \right) F_{7}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{32}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{31}\! \left(x \right) F_{7}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{37}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{38}\! \left(x \right) F_{7}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{39}\! \left(x \right)+F_{45}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)+F_{44}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{41}\! \left(x \right)+F_{42}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{40}\! \left(x \right) F_{7}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{43}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{14}\! \left(x \right) F_{40}\! \left(x \right) F_{7}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{14}\! \left(x \right) F_{31}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{18}\! \left(x \right) F_{40}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{47}\! \left(x \right)\\
F_{47}\! \left(x \right) &= F_{13}\! \left(x \right) F_{29}\! \left(x \right) F_{7}\! \left(x \right)\\
F_{48}\! \left(x \right) &= F_{49}\! \left(x \right)\\
F_{49}\! \left(x \right) &= F_{7}\! \left(x \right) F_{8}\! \left(x \right)\\
\end{align*}\)