Av(1243, 1342, 2341, 3124, 4123)
Generating Function
\(\displaystyle \frac{-\left(x -1\right)^{4} \sqrt{-4 x +1}+2 x^{5}+3 x^{4}-4 x^{3}+6 x^{2}-4 x +1}{2 x \left(x -1\right)^{4}}\)
Counting Sequence
1, 1, 2, 6, 19, 56, 162, 484, 1521, 5002, 17000, 59071, 208397, 743406, 2675090, ...
Implicit Equation for the Generating Function
\(\displaystyle x \left(x -1\right)^{8} F \left(x
\right)^{2}-\left(2 x^{5}+3 x^{4}-4 x^{3}+6 x^{2}-4 x +1\right) \left(x -1\right)^{4} F \! \left(x \right)+x^{9}+4 x^{8}-10 x^{7}+30 x^{6}-54 x^{5}+67 x^{4}-55 x^{3}+28 x^{2}-8 x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 56\)
\(\displaystyle a \! \left(6\right) = 162\)
\(\displaystyle a \! \left(1+n \right) = \frac{2 \left(2 n +1\right) a \! \left(n \right)}{n +2}-\frac{\left(n -1\right) \left(2 n^{3}-9 n^{2}+4 n +4\right)}{2 \left(n +2\right)}, \quad n \geq 7\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 56\)
\(\displaystyle a \! \left(6\right) = 162\)
\(\displaystyle a \! \left(1+n \right) = \frac{2 \left(2 n +1\right) a \! \left(n \right)}{n +2}-\frac{\left(n -1\right) \left(2 n^{3}-9 n^{2}+4 n +4\right)}{2 \left(n +2\right)}, \quad n \geq 7\)
This specification was found using the strategy pack "Requirement Placements Tracked Fusion" and has 85 rules.
Found on July 23, 2021.Finding the specification took 12 seconds.
This tree is too big to show here. Click to view tree on new page.
Copy 85 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{1}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{3}\! \left(x \right)\\
F_{2}\! \left(x \right) &= 1\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{1}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{6}\! \left(x , 1\right)\\
F_{6}\! \left(x , y\right) &= y x\\
F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{5}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{66}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{33}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{13}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{17}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{14}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{28}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{20}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{22}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{23}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{25}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{27}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{5}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{23}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{29}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{30}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{32}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{15}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{28}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)+F_{35}\! \left(x \right)+F_{36}\! \left(x \right)\\
F_{34}\! \left(x \right) &= 0\\
F_{35}\! \left(x \right) &= F_{10}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{37}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{38}\! \left(x \right)+F_{42}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{3}\! \left(x \right)+F_{39}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{41}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{39}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{43}\! \left(x \right)+F_{61}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{34}\! \left(x \right)+F_{44}\! \left(x \right)+F_{49}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{45}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{3}\! \left(x \right)+F_{46}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{34}\! \left(x \right)+F_{44}\! \left(x \right)+F_{47}\! \left(x \right)\\
F_{47}\! \left(x \right) &= F_{48}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{48}\! \left(x \right) &= F_{3}\! \left(x \right)+F_{46}\! \left(x \right)\\
F_{49}\! \left(x \right) &= F_{5}\! \left(x \right) F_{50}\! \left(x \right)\\
F_{50}\! \left(x \right) &= F_{51}\! \left(x \right)+F_{55}\! \left(x \right)\\
F_{51}\! \left(x \right) &= F_{3}\! \left(x \right)+F_{52}\! \left(x \right)\\
F_{52}\! \left(x \right) &= F_{53}\! \left(x \right)\\
F_{53}\! \left(x \right) &= F_{5}\! \left(x \right) F_{54}\! \left(x \right)\\
F_{54}\! \left(x \right) &= F_{5}\! \left(x \right)+F_{52}\! \left(x \right)\\
F_{55}\! \left(x \right) &= F_{43}\! \left(x \right)+F_{56}\! \left(x \right)\\
F_{56}\! \left(x \right) &= F_{57}\! \left(x \right)\\
F_{57}\! \left(x \right) &= F_{5}\! \left(x \right) F_{58}\! \left(x \right)\\
F_{58}\! \left(x \right) &= F_{59}\! \left(x \right)+F_{60}\! \left(x \right)\\
F_{59}\! \left(x \right) &= F_{52}\! \left(x \right)\\
F_{60}\! \left(x \right) &= F_{56}\! \left(x \right)\\
F_{61}\! \left(x \right) &= F_{62}\! \left(x \right)\\
F_{62}\! \left(x \right) &= F_{5}\! \left(x \right) F_{63}\! \left(x \right)\\
F_{63}\! \left(x \right) &= F_{64}\! \left(x \right)+F_{65}\! \left(x \right)\\
F_{64}\! \left(x \right) &= F_{39}\! \left(x \right)\\
F_{65}\! \left(x \right) &= F_{61}\! \left(x \right)\\
F_{66}\! \left(x \right) &= F_{67}\! \left(x \right)\\
F_{67}\! \left(x \right) &= F_{68}\! \left(x , 1\right)\\
F_{68}\! \left(x , y\right) &= F_{69}\! \left(x , y\right)\\
F_{69}\! \left(x , y\right) &= F_{70}\! \left(x , y\right)\\
F_{70}\! \left(x , y\right) &= F_{5}\! \left(x \right) F_{71}\! \left(x , y\right) F_{74}\! \left(x , y\right)\\
F_{71}\! \left(x , y\right) &= F_{2}\! \left(x \right)+F_{72}\! \left(x , y\right)\\
F_{72}\! \left(x , y\right) &= F_{73}\! \left(x , y\right)\\
F_{73}\! \left(x , y\right) &= F_{6}\! \left(x , y\right) F_{71}\! \left(x , y\right)\\
F_{74}\! \left(x , y\right) &= F_{75}\! \left(x , y\right)+F_{84}\! \left(x , y\right)\\
F_{75}\! \left(x , y\right) &= F_{76}\! \left(x , y\right)+F_{79}\! \left(x , y\right)\\
F_{76}\! \left(x , y\right) &= F_{3}\! \left(x \right)+F_{77}\! \left(x , y\right)\\
F_{77}\! \left(x , y\right) &= F_{78}\! \left(x , y\right)\\
F_{78}\! \left(x , y\right) &= F_{6}\! \left(x , y\right) F_{76}\! \left(x , y\right)\\
F_{79}\! \left(x , y\right) &= F_{46}\! \left(x \right)+F_{80}\! \left(x , y\right)\\
F_{80}\! \left(x , y\right) &= 2 F_{34}\! \left(x \right)+F_{81}\! \left(x , y\right)+F_{83}\! \left(x , y\right)\\
F_{81}\! \left(x , y\right) &= F_{5}\! \left(x \right) F_{82}\! \left(x , y\right)\\
F_{82}\! \left(x , y\right) &= F_{77}\! \left(x , y\right)+F_{80}\! \left(x , y\right)\\
F_{83}\! \left(x , y\right) &= F_{6}\! \left(x , y\right) F_{79}\! \left(x , y\right)\\
F_{84}\! \left(x , y\right) &= \frac{F_{69}\! \left(x , y\right) y -F_{69}\! \left(x , 1\right)}{-1+y}\\
\end{align*}\)