Av(1243, 1342, 2314, 3142)
Generating Function
\(\displaystyle -\frac{\left(2 x -1\right)^{3}}{5 x^{4}-17 x^{3}+17 x^{2}-7 x +1}\)
Counting Sequence
1, 1, 2, 6, 20, 67, 221, 718, 2308, 7372, 23469, 74605, 237046, 753150, 2393208, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(5 x^{4}-17 x^{3}+17 x^{2}-7 x +1\right) F \! \left(x \right)+\left(2 x -1\right)^{3} = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(n +4\right) = -5 a \! \left(n \right)+17 a \! \left(n +1\right)-17 a \! \left(n +2\right)+7 a \! \left(n +3\right), \quad n \geq 4\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(n +4\right) = -5 a \! \left(n \right)+17 a \! \left(n +1\right)-17 a \! \left(n +2\right)+7 a \! \left(n +3\right), \quad n \geq 4\)
Explicit Closed Form
\(\displaystyle \frac{230 \left(\underset{\alpha =\mathit{RootOf} \left(5 Z^{4}-17 Z^{3}+17 Z^{2}-7 Z +1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n +2}\right)}{331}-\frac{457 \left(\underset{\alpha =\mathit{RootOf} \left(5 Z^{4}-17 Z^{3}+17 Z^{2}-7 Z +1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n +1}\right)}{331}+\frac{201 \left(\underset{\alpha =\mathit{RootOf} \left(5 Z^{4}-17 Z^{3}+17 Z^{2}-7 Z +1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n}\right)}{331}-\frac{2 \left(\underset{\alpha =\mathit{RootOf} \left(5 Z^{4}-17 Z^{3}+17 Z^{2}-7 Z +1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n -1}\right)}{331}\)
This specification was found using the strategy pack "Point Placements" and has 27 rules.
Found on July 23, 2021.Finding the specification took 3 seconds.
Copy 27 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{4}\! \left(x \right) &= x\\
F_{5}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{4}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{0}\! \left(x \right) F_{10}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{17}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right) F_{15}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{13}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{16}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{15}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{18}\! \left(x \right) F_{21}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{19}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{18}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{15}\! \left(x \right) F_{19}\! \left(x \right) F_{23}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{24}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{15}\! \left(x \right) F_{23}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{18}\! \left(x \right) F_{6}\! \left(x \right)\\
\end{align*}\)