Av(1243, 1342, 2314, 2413, 3214)
Generating Function
\(\displaystyle -\frac{\left(x -1\right)^{4}}{x^{6}-x^{5}-3 x^{4}+9 x^{3}-9 x^{2}+5 x -1}\)
Counting Sequence
1, 1, 2, 6, 19, 55, 152, 417, 1151, 3192, 8862, 24593, 68217, 189196, 524737, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x^{6}-x^{5}-3 x^{4}+9 x^{3}-9 x^{2}+5 x -1\right) F \! \left(x \right)+\left(x -1\right)^{4} = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 55\)
\(\displaystyle a \! \left(n +6\right) = a \! \left(n \right)-a \! \left(n +1\right)-3 a \! \left(n +2\right)+9 a \! \left(n +3\right)-9 a \! \left(n +4\right)+5 a \! \left(n +5\right), \quad n \geq 6\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 55\)
\(\displaystyle a \! \left(n +6\right) = a \! \left(n \right)-a \! \left(n +1\right)-3 a \! \left(n +2\right)+9 a \! \left(n +3\right)-9 a \! \left(n +4\right)+5 a \! \left(n +5\right), \quad n \geq 6\)
Explicit Closed Form
\(\displaystyle \frac{8142 \mathit{RootOf} \left(Z^{6}-Z^{5}-3 Z^{4}+9 Z^{3}-9 Z^{2}+5 Z -1, \mathit{index} =1\right)^{-n +4}}{154361}+\frac{8142 \mathit{RootOf} \left(Z^{6}-Z^{5}-3 Z^{4}+9 Z^{3}-9 Z^{2}+5 Z -1, \mathit{index} =2\right)^{-n +4}}{154361}+\frac{8142 \mathit{RootOf} \left(Z^{6}-Z^{5}-3 Z^{4}+9 Z^{3}-9 Z^{2}+5 Z -1, \mathit{index} =3\right)^{-n +4}}{154361}+\frac{8142 \mathit{RootOf} \left(Z^{6}-Z^{5}-3 Z^{4}+9 Z^{3}-9 Z^{2}+5 Z -1, \mathit{index} =4\right)^{-n +4}}{154361}+\frac{8142 \mathit{RootOf} \left(Z^{6}-Z^{5}-3 Z^{4}+9 Z^{3}-9 Z^{2}+5 Z -1, \mathit{index} =5\right)^{-n +4}}{154361}+\frac{8142 \mathit{RootOf} \left(Z^{6}-Z^{5}-3 Z^{4}+9 Z^{3}-9 Z^{2}+5 Z -1, \mathit{index} =6\right)^{-n +4}}{154361}+\frac{9213 \mathit{RootOf} \left(Z^{6}-Z^{5}-3 Z^{4}+9 Z^{3}-9 Z^{2}+5 Z -1, \mathit{index} =1\right)^{-n +3}}{154361}+\frac{9213 \mathit{RootOf} \left(Z^{6}-Z^{5}-3 Z^{4}+9 Z^{3}-9 Z^{2}+5 Z -1, \mathit{index} =2\right)^{-n +3}}{154361}+\frac{9213 \mathit{RootOf} \left(Z^{6}-Z^{5}-3 Z^{4}+9 Z^{3}-9 Z^{2}+5 Z -1, \mathit{index} =3\right)^{-n +3}}{154361}+\frac{9213 \mathit{RootOf} \left(Z^{6}-Z^{5}-3 Z^{4}+9 Z^{3}-9 Z^{2}+5 Z -1, \mathit{index} =4\right)^{-n +3}}{154361}+\frac{9213 \mathit{RootOf} \left(Z^{6}-Z^{5}-3 Z^{4}+9 Z^{3}-9 Z^{2}+5 Z -1, \mathit{index} =5\right)^{-n +3}}{154361}+\frac{9213 \mathit{RootOf} \left(Z^{6}-Z^{5}-3 Z^{4}+9 Z^{3}-9 Z^{2}+5 Z -1, \mathit{index} =6\right)^{-n +3}}{154361}-\frac{22249 \mathit{RootOf} \left(Z^{6}-Z^{5}-3 Z^{4}+9 Z^{3}-9 Z^{2}+5 Z -1, \mathit{index} =1\right)^{-n +2}}{154361}-\frac{22249 \mathit{RootOf} \left(Z^{6}-Z^{5}-3 Z^{4}+9 Z^{3}-9 Z^{2}+5 Z -1, \mathit{index} =2\right)^{-n +2}}{154361}-\frac{22249 \mathit{RootOf} \left(Z^{6}-Z^{5}-3 Z^{4}+9 Z^{3}-9 Z^{2}+5 Z -1, \mathit{index} =3\right)^{-n +2}}{154361}-\frac{22249 \mathit{RootOf} \left(Z^{6}-Z^{5}-3 Z^{4}+9 Z^{3}-9 Z^{2}+5 Z -1, \mathit{index} =4\right)^{-n +2}}{154361}-\frac{22249 \mathit{RootOf} \left(Z^{6}-Z^{5}-3 Z^{4}+9 Z^{3}-9 Z^{2}+5 Z -1, \mathit{index} =5\right)^{-n +2}}{154361}-\frac{22249 \mathit{RootOf} \left(Z^{6}-Z^{5}-3 Z^{4}+9 Z^{3}-9 Z^{2}+5 Z -1, \mathit{index} =6\right)^{-n +2}}{154361}+\frac{9530 \mathit{RootOf} \left(Z^{6}-Z^{5}-3 Z^{4}+9 Z^{3}-9 Z^{2}+5 Z -1, \mathit{index} =1\right)^{-n +1}}{154361}+\frac{9530 \mathit{RootOf} \left(Z^{6}-Z^{5}-3 Z^{4}+9 Z^{3}-9 Z^{2}+5 Z -1, \mathit{index} =2\right)^{-n +1}}{154361}+\frac{9530 \mathit{RootOf} \left(Z^{6}-Z^{5}-3 Z^{4}+9 Z^{3}-9 Z^{2}+5 Z -1, \mathit{index} =3\right)^{-n +1}}{154361}+\frac{9530 \mathit{RootOf} \left(Z^{6}-Z^{5}-3 Z^{4}+9 Z^{3}-9 Z^{2}+5 Z -1, \mathit{index} =4\right)^{-n +1}}{154361}+\frac{9530 \mathit{RootOf} \left(Z^{6}-Z^{5}-3 Z^{4}+9 Z^{3}-9 Z^{2}+5 Z -1, \mathit{index} =5\right)^{-n +1}}{154361}+\frac{9530 \mathit{RootOf} \left(Z^{6}-Z^{5}-3 Z^{4}+9 Z^{3}-9 Z^{2}+5 Z -1, \mathit{index} =6\right)^{-n +1}}{154361}+\frac{8009 \mathit{RootOf} \left(Z^{6}-Z^{5}-3 Z^{4}+9 Z^{3}-9 Z^{2}+5 Z -1, \mathit{index} =1\right)^{-n -1}}{154361}+\frac{8009 \mathit{RootOf} \left(Z^{6}-Z^{5}-3 Z^{4}+9 Z^{3}-9 Z^{2}+5 Z -1, \mathit{index} =2\right)^{-n -1}}{154361}+\frac{8009 \mathit{RootOf} \left(Z^{6}-Z^{5}-3 Z^{4}+9 Z^{3}-9 Z^{2}+5 Z -1, \mathit{index} =3\right)^{-n -1}}{154361}+\frac{8009 \mathit{RootOf} \left(Z^{6}-Z^{5}-3 Z^{4}+9 Z^{3}-9 Z^{2}+5 Z -1, \mathit{index} =4\right)^{-n -1}}{154361}+\frac{8009 \mathit{RootOf} \left(Z^{6}-Z^{5}-3 Z^{4}+9 Z^{3}-9 Z^{2}+5 Z -1, \mathit{index} =5\right)^{-n -1}}{154361}+\frac{8009 \mathit{RootOf} \left(Z^{6}-Z^{5}-3 Z^{4}+9 Z^{3}-9 Z^{2}+5 Z -1, \mathit{index} =6\right)^{-n -1}}{154361}+\frac{27458 \mathit{RootOf} \left(Z^{6}-Z^{5}-3 Z^{4}+9 Z^{3}-9 Z^{2}+5 Z -1, \mathit{index} =1\right)^{-n}}{154361}+\frac{27458 \mathit{RootOf} \left(Z^{6}-Z^{5}-3 Z^{4}+9 Z^{3}-9 Z^{2}+5 Z -1, \mathit{index} =2\right)^{-n}}{154361}+\frac{27458 \mathit{RootOf} \left(Z^{6}-Z^{5}-3 Z^{4}+9 Z^{3}-9 Z^{2}+5 Z -1, \mathit{index} =3\right)^{-n}}{154361}+\frac{27458 \mathit{RootOf} \left(Z^{6}-Z^{5}-3 Z^{4}+9 Z^{3}-9 Z^{2}+5 Z -1, \mathit{index} =4\right)^{-n}}{154361}+\frac{27458 \mathit{RootOf} \left(Z^{6}-Z^{5}-3 Z^{4}+9 Z^{3}-9 Z^{2}+5 Z -1, \mathit{index} =5\right)^{-n}}{154361}+\frac{27458 \mathit{RootOf} \left(Z^{6}-Z^{5}-3 Z^{4}+9 Z^{3}-9 Z^{2}+5 Z -1, \mathit{index} =6\right)^{-n}}{154361}\)
This specification was found using the strategy pack "Point Placements" and has 50 rules.
Found on January 18, 2022.Finding the specification took 1 seconds.
Copy 50 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{4}\! \left(x \right) &= x\\
F_{5}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{13}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{16}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{18}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{17}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{21}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{23}\! \left(x \right)+F_{33}\! \left(x \right)\\
F_{22}\! \left(x \right) &= 0\\
F_{23}\! \left(x \right) &= F_{24}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{31}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{22}\! \left(x \right)+F_{27}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{28}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{29}\! \left(x \right)+F_{30}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{7}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{27}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{45}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{34}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{35}\! \left(x \right)+F_{38}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{36}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{37}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{35}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{39}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{4}\! \left(x \right) F_{41}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{42}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{36}\! \left(x \right)+F_{43}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{44}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{4}\! \left(x \right) F_{42}\! \left(x \right)\\
F_{45}\! \left(x \right) &= 2 F_{22}\! \left(x \right)+F_{40}\! \left(x \right)+F_{46}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{4}\! \left(x \right) F_{47}\! \left(x \right)\\
F_{47}\! \left(x \right) &= F_{48}\! \left(x \right)+F_{49}\! \left(x \right)\\
F_{48}\! \left(x \right) &= F_{32}\! \left(x \right)\\
F_{49}\! \left(x \right) &= F_{46}\! \left(x \right)\\
\end{align*}\)