Av(1243, 1342, 2143, 3241)
View Raw Data
Generating Function
\(\displaystyle \frac{x^{4}-2 x^{3}+7 x^{2}-5 x +1}{\left(2 x -1\right) \left(x^{3}-3 x^{2}+4 x -1\right)}\)
Counting Sequence
1, 1, 2, 6, 20, 66, 214, 686, 2184, 6924, 21894, 69116, 217962, 686906, 2163878, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(2 x -1\right) \left(x^{3}-3 x^{2}+4 x -1\right) F \! \left(x \right)-x^{4}+2 x^{3}-7 x^{2}+5 x -1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 20\)
\(\displaystyle a \! \left(n +4\right) = -2 a \! \left(n \right)+7 a \! \left(n +1\right)-11 a \! \left(n +2\right)+6 a \! \left(n +3\right), \quad n \geq 5\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}1 & n =0 \\ \frac{\left(15 \,2^{\frac{2}{3}} \left(\left(\mathrm{I} \,3^{\frac{1}{3}}-\frac{3^{\frac{5}{6}}}{3}\right) \sqrt{31}-\frac{31 \,\mathrm{I} \,3^{\frac{5}{6}}}{5}+\frac{31 \,3^{\frac{1}{3}}}{5}\right) \left(9+\sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}+372-24 \,2^{\frac{1}{3}} \left(\left(\mathrm{I} \,3^{\frac{2}{3}}+3^{\frac{1}{6}}\right) \sqrt{31}-\frac{31 \,\mathrm{I} \,3^{\frac{1}{6}}}{4}-\frac{31 \,3^{\frac{2}{3}}}{12}\right) \left(9+\sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}\right) \left(\frac{\left(108+12 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}-\frac{\mathrm{I} \left(36+4 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}} 3^{\frac{5}{6}}}{12}+1+\frac{\left(\left(-\mathrm{I} \sqrt{31}+3\right) 18^{\frac{1}{3}}+9 \,\mathrm{I} \,2^{\frac{1}{3}} 3^{\frac{1}{6}}-2^{\frac{1}{3}} 3^{\frac{1}{6}} \sqrt{31}\right) \left(9+\sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}}{24}\right)^{-n}}{1674}\\+\\\frac{\left(-15 \left(\left(\mathrm{I} \,3^{\frac{1}{3}}+\frac{3^{\frac{5}{6}}}{3}\right) \sqrt{31}-\frac{31 \,\mathrm{I} \,3^{\frac{5}{6}}}{5}-\frac{31 \,3^{\frac{1}{3}}}{5}\right) 2^{\frac{2}{3}} \left(9+\sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}+372+24 \,2^{\frac{1}{3}} \left(\left(\mathrm{I} \,3^{\frac{2}{3}}-3^{\frac{1}{6}}\right) \sqrt{31}-\frac{31 \,\mathrm{I} \,3^{\frac{1}{6}}}{4}+\frac{31 \,3^{\frac{2}{3}}}{12}\right) \left(9+\sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}\right) \left(\frac{\left(108+12 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}+\frac{\mathrm{I} \left(36+4 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}} 3^{\frac{5}{6}}}{12}+1+\frac{\left(\left(\mathrm{I} \sqrt{31}+3\right) 18^{\frac{1}{3}}-9 \,\mathrm{I} \,2^{\frac{1}{3}} 3^{\frac{1}{6}}-2^{\frac{1}{3}} 3^{\frac{1}{6}} \sqrt{31}\right) \left(9+\sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}}{24}\right)^{-n}}{1674}\\+\\\frac{\left(10 \,2^{\frac{2}{3}} \left(\sqrt{31}\, 3^{\frac{5}{6}}-\frac{93 \,3^{\frac{1}{3}}}{5}\right) \left(9+\sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}+372+48 \,2^{\frac{1}{3}} \left(3^{\frac{1}{6}} \sqrt{31}-\frac{31 \,3^{\frac{2}{3}}}{12}\right) \left(9+\sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}\right) \left(-\frac{\left(108+12 \sqrt{31}\, \sqrt{3}\right)^{\frac{1}{3}}}{6}+1+\frac{\left(2^{\frac{1}{3}} 3^{\frac{1}{6}} \sqrt{31}-3 \,18^{\frac{1}{3}}\right) \left(9+\sqrt{31}\, \sqrt{3}\right)^{\frac{2}{3}}}{12}\right)^{-n}}{1674}\\-\frac{2^{n}}{6} & \text{otherwise} \end{array}\right.\)

This specification was found using the strategy pack "Point Placements" and has 145 rules.

Found on January 18, 2022.

Finding the specification took 2 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 145 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{12}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{12}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{10}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{12}\! \left(x \right) &= x\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{17}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{12}\! \left(x \right) F_{16}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{14}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{19}\! \left(x \right)+F_{21}\! \left(x \right)\\ F_{18}\! \left(x \right) &= 0\\ F_{19}\! \left(x \right) &= F_{12}\! \left(x \right) F_{20}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{17}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{12}\! \left(x \right) F_{13}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{46}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{12}\! \left(x \right) F_{25}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{33}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{27}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{12}\! \left(x \right) F_{29}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{31}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{12}\! \left(x \right) F_{30}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{34}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{35}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{12}\! \left(x \right) F_{36}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{37}\! \left(x \right)+F_{40}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{38}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{39}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{12}\! \left(x \right) F_{37}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{41}\! \left(x \right)+F_{44}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{42}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{12}\! \left(x \right) F_{43}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{41}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{45}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{12}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{47}\! \left(x \right)+F_{77}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{12}\! \left(x \right) F_{48}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{49}\! \left(x \right)+F_{59}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{50}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{21}\! \left(x \right)+F_{51}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{12}\! \left(x \right) F_{52}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{53}\! \left(x \right)+F_{56}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{54}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{55}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{12}\! \left(x \right) F_{53}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{57}\! \left(x \right)\\ F_{57}\! \left(x \right) &= F_{58}\! \left(x \right)\\ F_{58}\! \left(x \right) &= F_{12}\! \left(x \right) F_{56}\! \left(x \right)\\ F_{59}\! \left(x \right) &= F_{60}\! \left(x \right)+F_{63}\! \left(x \right)\\ F_{60}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{47}\! \left(x \right)+F_{61}\! \left(x \right)\\ F_{61}\! \left(x \right) &= F_{12}\! \left(x \right) F_{62}\! \left(x \right)\\ F_{62}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{60}\! \left(x \right)\\ F_{63}\! \left(x \right) &= 2 F_{18}\! \left(x \right)+F_{64}\! \left(x \right)+F_{73}\! \left(x \right)\\ F_{64}\! \left(x \right) &= F_{12}\! \left(x \right) F_{65}\! \left(x \right)\\ F_{65}\! \left(x \right) &= F_{66}\! \left(x \right)+F_{69}\! \left(x \right)\\ F_{66}\! \left(x \right) &= F_{60}\! \left(x \right)+F_{67}\! \left(x \right)\\ F_{67}\! \left(x \right) &= F_{68}\! \left(x \right)\\ F_{68}\! \left(x \right) &= F_{12}\! \left(x \right) F_{66}\! \left(x \right)\\ F_{69}\! \left(x \right) &= F_{70}\! \left(x \right)+F_{75}\! \left(x \right)\\ F_{70}\! \left(x \right) &= 2 F_{18}\! \left(x \right)+F_{71}\! \left(x \right)+F_{73}\! \left(x \right)\\ F_{71}\! \left(x \right) &= F_{12}\! \left(x \right) F_{72}\! \left(x \right)\\ F_{72}\! \left(x \right) &= F_{60}\! \left(x \right)+F_{70}\! \left(x \right)\\ F_{73}\! \left(x \right) &= F_{12}\! \left(x \right) F_{74}\! \left(x \right)\\ F_{74}\! \left(x \right) &= F_{41}\! \left(x \right)+F_{70}\! \left(x \right)\\ F_{75}\! \left(x \right) &= F_{76}\! \left(x \right)\\ F_{76}\! \left(x \right) &= F_{12}\! \left(x \right) F_{69}\! \left(x \right)\\ F_{77}\! \left(x \right) &= F_{12}\! \left(x \right) F_{78}\! \left(x \right)\\ F_{78}\! \left(x \right) &= F_{62}\! \left(x \right)+F_{79}\! \left(x \right)\\ F_{79}\! \left(x \right) &= F_{111}\! \left(x \right)+F_{80}\! \left(x \right)\\ F_{80}\! \left(x \right) &= F_{109}\! \left(x \right)+F_{18}\! \left(x \right)+F_{81}\! \left(x \right)\\ F_{81}\! \left(x \right) &= F_{12}\! \left(x \right) F_{82}\! \left(x \right)\\ F_{82}\! \left(x \right) &= F_{83}\! \left(x \right)+F_{95}\! \left(x \right)\\ F_{83}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{84}\! \left(x \right)\\ F_{84}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{85}\! \left(x \right)+F_{92}\! \left(x \right)\\ F_{85}\! \left(x \right) &= F_{12}\! \left(x \right) F_{86}\! \left(x \right)\\ F_{86}\! \left(x \right) &= F_{87}\! \left(x \right)+F_{90}\! \left(x \right)\\ F_{87}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{88}\! \left(x \right)\\ F_{88}\! \left(x \right) &= F_{89}\! \left(x \right)\\ F_{89}\! \left(x \right) &= F_{12}\! \left(x \right) F_{87}\! \left(x \right)\\ F_{90}\! \left(x \right) &= F_{91}\! \left(x \right)+F_{93}\! \left(x \right)\\ F_{91}\! \left(x \right) &= F_{92}\! \left(x \right)\\ F_{92}\! \left(x \right) &= F_{12}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{93}\! \left(x \right) &= F_{94}\! \left(x \right)\\ F_{94}\! \left(x \right) &= F_{12}\! \left(x \right) F_{90}\! \left(x \right)\\ F_{95}\! \left(x \right) &= F_{96}\! \left(x \right)+F_{98}\! \left(x \right)\\ F_{96}\! \left(x \right) &= F_{97}\! \left(x \right)\\ F_{97}\! \left(x \right) &= F_{12}\! \left(x \right) F_{23}\! \left(x \right)\\ F_{98}\! \left(x \right) &= 2 F_{18}\! \left(x \right)+F_{106}\! \left(x \right)+F_{99}\! \left(x \right)\\ F_{99}\! \left(x \right) &= F_{100}\! \left(x \right) F_{12}\! \left(x \right)\\ F_{100}\! \left(x \right) &= F_{101}\! \left(x \right)+F_{104}\! \left(x \right)\\ F_{101}\! \left(x \right) &= F_{102}\! \left(x \right)+F_{96}\! \left(x \right)\\ F_{102}\! \left(x \right) &= F_{103}\! \left(x \right)\\ F_{103}\! \left(x \right) &= F_{101}\! \left(x \right) F_{12}\! \left(x \right)\\ F_{104}\! \left(x \right) &= F_{105}\! \left(x \right)+F_{107}\! \left(x \right)\\ F_{105}\! \left(x \right) &= F_{106}\! \left(x \right)\\ F_{106}\! \left(x \right) &= F_{12}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{107}\! \left(x \right) &= F_{108}\! \left(x \right)\\ F_{108}\! \left(x \right) &= F_{104}\! \left(x \right) F_{12}\! \left(x \right)\\ F_{109}\! \left(x \right) &= F_{110}\! \left(x \right) F_{12}\! \left(x \right)\\ F_{110}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{80}\! \left(x \right)\\ F_{111}\! \left(x \right) &= F_{112}\! \left(x \right)+F_{142}\! \left(x \right)+F_{144}\! \left(x \right)+F_{18}\! \left(x \right)\\ F_{112}\! \left(x \right) &= F_{113}\! \left(x \right) F_{12}\! \left(x \right)\\ F_{113}\! \left(x \right) &= F_{114}\! \left(x \right)+F_{128}\! \left(x \right)\\ F_{114}\! \left(x \right) &= F_{115}\! \left(x \right)+F_{117}\! \left(x \right)\\ F_{115}\! \left(x \right) &= F_{116}\! \left(x \right)\\ F_{116}\! \left(x \right) &= F_{10}\! \left(x \right) F_{12}\! \left(x \right)\\ F_{117}\! \left(x \right) &= 2 F_{18}\! \left(x \right)+F_{118}\! \left(x \right)+F_{125}\! \left(x \right)\\ F_{118}\! \left(x \right) &= F_{119}\! \left(x \right) F_{12}\! \left(x \right)\\ F_{119}\! \left(x \right) &= F_{120}\! \left(x \right)+F_{123}\! \left(x \right)\\ F_{120}\! \left(x \right) &= F_{115}\! \left(x \right)+F_{121}\! \left(x \right)\\ F_{121}\! \left(x \right) &= F_{122}\! \left(x \right)\\ F_{122}\! \left(x \right) &= F_{12}\! \left(x \right) F_{120}\! \left(x \right)\\ F_{123}\! \left(x \right) &= F_{124}\! \left(x \right)+F_{126}\! \left(x \right)\\ F_{124}\! \left(x \right) &= F_{125}\! \left(x \right)\\ F_{125}\! \left(x \right) &= F_{12}\! \left(x \right) F_{17}\! \left(x \right)\\ F_{126}\! \left(x \right) &= F_{127}\! \left(x \right)\\ F_{127}\! \left(x \right) &= F_{12}\! \left(x \right) F_{123}\! \left(x \right)\\ F_{128}\! \left(x \right) &= F_{129}\! \left(x \right)+F_{131}\! \left(x \right)\\ F_{129}\! \left(x \right) &= F_{130}\! \left(x \right)\\ F_{130}\! \left(x \right) &= F_{12}\! \left(x \right) F_{60}\! \left(x \right)\\ F_{131}\! \left(x \right) &= 3 F_{18}\! \left(x \right)+F_{132}\! \left(x \right)+F_{139}\! \left(x \right)\\ F_{132}\! \left(x \right) &= F_{12}\! \left(x \right) F_{133}\! \left(x \right)\\ F_{133}\! \left(x \right) &= F_{134}\! \left(x \right)+F_{137}\! \left(x \right)\\ F_{134}\! \left(x \right) &= F_{129}\! \left(x \right)+F_{135}\! \left(x \right)\\ F_{135}\! \left(x \right) &= F_{136}\! \left(x \right)\\ F_{136}\! \left(x \right) &= F_{12}\! \left(x \right) F_{134}\! \left(x \right)\\ F_{137}\! \left(x \right) &= F_{138}\! \left(x \right)+F_{140}\! \left(x \right)\\ F_{138}\! \left(x \right) &= F_{139}\! \left(x \right)\\ F_{139}\! \left(x \right) &= F_{12}\! \left(x \right) F_{70}\! \left(x \right)\\ F_{140}\! \left(x \right) &= F_{141}\! \left(x \right)\\ F_{141}\! \left(x \right) &= F_{12}\! \left(x \right) F_{137}\! \left(x \right)\\ F_{142}\! \left(x \right) &= F_{12}\! \left(x \right) F_{143}\! \left(x \right)\\ F_{143}\! \left(x \right) &= F_{111}\! \left(x \right)+F_{60}\! \left(x \right)\\ F_{144}\! \left(x \right) &= F_{12}\! \left(x \right) F_{79}\! \left(x \right)\\ \end{align*}\)