Av(1243, 1342, 2143, 3214, 3421)
View Raw Data
Generating Function
\(\displaystyle -\frac{\left(x^{2}+1\right) \left(x^{5}-2 x^{4}+6 x^{2}-4 x +1\right)}{\left(x -1\right)^{5}}\)
Counting Sequence
1, 1, 2, 6, 19, 52, 119, 238, 431, 724, 1147, 1734, 2523, 3556, 4879, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x -1\right)^{5} F \! \left(x \right)+\left(x^{2}+1\right) \left(x^{5}-2 x^{4}+6 x^{2}-4 x +1\right) = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 52\)
\(\displaystyle a \! \left(6\right) = 119\)
\(\displaystyle a \! \left(7\right) = 238\)
\(\displaystyle a \! \left(n \right) = 7-\frac{13}{3} n -\frac{2}{3} n^{3}+\frac{11}{6} n^{2}+\frac{1}{6} n^{4}, \quad n \geq 8\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}1 & n =0\text{ or } n =1 \\ 2 & n =2 \\ 7-\frac{13}{3} n -\frac{2}{3} n^{3}+\frac{11}{6} n^{2}+\frac{1}{6} n^{4} & \text{otherwise} \end{array}\right.\)

This specification was found using the strategy pack "Point Placements" and has 59 rules.

Found on January 18, 2022.

Finding the specification took 1 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 59 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{4}\! \left(x \right) &= x\\ F_{5}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{13}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{16}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{18}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{17}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{21}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{23}\! \left(x \right)+F_{42}\! \left(x \right)\\ F_{22}\! \left(x \right) &= 0\\ F_{23}\! \left(x \right) &= F_{24}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{29}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{26}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{22}\! \left(x \right)+F_{27}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{28}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{18}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{34}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{31}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{32}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{33}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{31}\! \left(x \right)\\ F_{34}\! \left(x \right) &= 2 F_{22}\! \left(x \right)+F_{35}\! \left(x \right)+F_{40}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{36}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{37}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{33}\! \left(x \right)+F_{38}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{39}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{37}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{4}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{18}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{4}\! \left(x \right) F_{43}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{44}\! \left(x \right)+F_{50}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{45}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{46}\! \left(x \right)+F_{49}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{4}\! \left(x \right) F_{47}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{48}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{22}\! \left(x \right)+F_{27}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{4}\! \left(x \right) F_{44}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{51}\! \left(x \right)+F_{52}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{42}\! \left(x \right)+F_{46}\! \left(x \right)\\ F_{52}\! \left(x \right) &= 2 F_{22}\! \left(x \right)+F_{35}\! \left(x \right)+F_{53}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{4}\! \left(x \right) F_{54}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{55}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{56}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{4}\! \left(x \right) F_{57}\! \left(x \right)\\ F_{57}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{58}\! \left(x \right)\\ F_{58}\! \left(x \right) &= F_{56}\! \left(x \right)\\ \end{align*}\)