Av(1243, 1342, 2143, 2314, 4132)
Generating Function
\(\displaystyle -\frac{x^{5}-x^{4}+x^{3}-5 x^{2}+4 x -1}{\left(x^{2}-3 x +1\right) \left(x -1\right)^{2}}\)
Counting Sequence
1, 1, 2, 6, 19, 55, 151, 404, 1068, 2808, 7365, 19297, 50537, 132326, 346454, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x^{2}-3 x +1\right) \left(x -1\right)^{2} F \! \left(x \right)+x^{5}-x^{4}+x^{3}-5 x^{2}+4 x -1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 55\)
\(\displaystyle a \! \left(n +2\right) = -a \! \left(n \right)+3 a \! \left(n +1\right)+n +1, \quad n \geq 6\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 55\)
\(\displaystyle a \! \left(n +2\right) = -a \! \left(n \right)+3 a \! \left(n +1\right)+n +1, \quad n \geq 6\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}1 & n =0\text{ or } n =1 \\ \frac{\left(-9 \sqrt{5}+25\right) \left(\frac{3}{2}-\frac{\sqrt{5}}{2}\right)^{-n}}{10}+\frac{\left(9 \sqrt{5}+25\right) \left(\frac{3}{2}+\frac{\sqrt{5}}{2}\right)^{-n}}{10}-n & \text{otherwise} \end{array}\right.\)
This specification was found using the strategy pack "Point Placements" and has 49 rules.
Found on January 18, 2022.Finding the specification took 1 seconds.
Copy 49 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{12}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{12}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{10}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{12}\! \left(x \right) &= x\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{17}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{12}\! \left(x \right) F_{16}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{14}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{19}\! \left(x \right)+F_{21}\! \left(x \right)\\
F_{18}\! \left(x \right) &= 0\\
F_{19}\! \left(x \right) &= F_{12}\! \left(x \right) F_{20}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{17}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{12}\! \left(x \right) F_{13}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{23}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{24}\! \left(x \right)+F_{44}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{12}\! \left(x \right) F_{25}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{31}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{27}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{12}\! \left(x \right) F_{29}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{30}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{28}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{35}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{24}\! \left(x \right)+F_{33}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{12}\! \left(x \right) F_{34}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{32}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{36}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{12}\! \left(x \right) F_{37}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{38}\! \left(x \right)+F_{43}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{39}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{12}\! \left(x \right) F_{40}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{41}\! \left(x \right)+F_{42}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{12}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{39}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{36}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{12}\! \left(x \right) F_{45}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{34}\! \left(x \right)+F_{46}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{38}\! \left(x \right)+F_{47}\! \left(x \right)\\
F_{47}\! \left(x \right) &= F_{48}\! \left(x \right)\\
F_{48}\! \left(x \right) &= F_{12}\! \left(x \right) F_{46}\! \left(x \right)\\
\end{align*}\)