Av(1243, 1342, 2134, 4213)
View Raw Data
Generating Function
\(\displaystyle \frac{x^{9}-6 x^{8}+17 x^{7}-33 x^{6}+51 x^{5}-59 x^{4}+50 x^{3}-27 x^{2}+8 x -1}{\left(x^{3}-2 x^{2}+3 x -1\right)^{2} \left(x -1\right)^{3}}\)
Counting Sequence
1, 1, 2, 6, 20, 61, 172, 461, 1197, 3047, 7659, 19091, 47304, 116680, 286749, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x^{3}-2 x^{2}+3 x -1\right)^{2} \left(x -1\right)^{3} F \! \left(x \right)-x^{9}+6 x^{8}-17 x^{7}+33 x^{6}-51 x^{5}+59 x^{4}-50 x^{3}+27 x^{2}-8 x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 20\)
\(\displaystyle a \! \left(5\right) = 61\)
\(\displaystyle a \! \left(6\right) = 172\)
\(\displaystyle a \! \left(7\right) = 461\)
\(\displaystyle a \! \left(8\right) = 1197\)
\(\displaystyle a \! \left(9\right) = 3047\)
\(\displaystyle a \! \left(n +6\right) = -a \! \left(n \right)+4 a \! \left(n +1\right)-10 a \! \left(n +2\right)+14 a \! \left(n +3\right)-13 a \! \left(n +4\right)+6 a \! \left(n +5\right)-\frac{\left(n +4\right) \left(n +1\right)}{2}, \quad n \geq 10\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}1 & n =0 \\ \frac{\left(92 \,2^{\frac{1}{3}} \left(\left(\left(2 n +\frac{195}{92}\right) \sqrt{23}+\mathrm{I} n -\frac{305 \,\mathrm{I}}{4}\right) \sqrt{3}+\left(6 \,\mathrm{I} n +\frac{585 \,\mathrm{I}}{92}\right) \sqrt{23}+n -\frac{305}{4}\right) \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{2}{3}}+3910 \,2^{\frac{2}{3}} \left(\left(\left(\frac{n}{17}-\frac{189}{391}\right) \sqrt{23}+\mathrm{I} n -\frac{16 \,\mathrm{I}}{17}\right) \sqrt{3}+\left(-\frac{3 \,\mathrm{I} n}{17}+\frac{567 \,\mathrm{I}}{391}\right) \sqrt{23}-n +\frac{16}{17}\right) \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{1}{3}}+59800 n -105800\right) \left(\frac{11 \,2^{\frac{1}{3}} \left(\left(\mathrm{I}-\frac{3 \sqrt{23}}{11}\right) \sqrt{3}-\frac{9 \,\mathrm{I} \sqrt{23}}{11}+1\right) \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{2}{3}}}{600}-\frac{\mathrm{I} \sqrt{3}\, \left(44+12 \sqrt{23}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}+\frac{\left(44+12 \sqrt{23}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}+\frac{2}{3}\right)^{-n}}{317400}\\+\\\frac{\left(-3910 \,2^{\frac{2}{3}} \left(\left(\left(-\frac{n}{17}+\frac{189}{391}\right) \sqrt{23}+\mathrm{I} n -\frac{16 \,\mathrm{I}}{17}\right) \sqrt{3}+\left(-\frac{3 \,\mathrm{I} n}{17}+\frac{567 \,\mathrm{I}}{391}\right) \sqrt{23}+n -\frac{16}{17}\right) \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{1}{3}}-92 \left(\left(\left(-2 n -\frac{195}{92}\right) \sqrt{23}+\mathrm{I} n -\frac{305 \,\mathrm{I}}{4}\right) \sqrt{3}+\left(6 \,\mathrm{I} n +\frac{585 \,\mathrm{I}}{92}\right) \sqrt{23}-n +\frac{305}{4}\right) 2^{\frac{1}{3}} \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{2}{3}}+59800 n -105800\right) \left(-\frac{11 \,2^{\frac{1}{3}} \left(\left(\mathrm{I}+\frac{3 \sqrt{23}}{11}\right) \sqrt{3}-\frac{9 \,\mathrm{I} \sqrt{23}}{11}-1\right) \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{2}{3}}}{600}+\frac{\mathrm{I} \sqrt{3}\, \left(44+12 \sqrt{23}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}+\frac{\left(44+12 \sqrt{23}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}+\frac{2}{3}\right)^{-n}}{317400}\\+\\\frac{\left(-460 \,2^{\frac{2}{3}} \left(\sqrt{3}\, \left(n -\frac{189}{23}\right) \sqrt{23}-17 n +16\right) \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{1}{3}}-368 \left(\sqrt{3}\, \left(n +\frac{195}{184}\right) \sqrt{23}+\frac{n}{2}-\frac{305}{8}\right) 2^{\frac{1}{3}} \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{2}{3}}+59800 n -105800\right) \left(\frac{2^{\frac{1}{3}} \left(3 \sqrt{23}\, \sqrt{3}-11\right) \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{2}{3}}}{300}-\frac{\left(44+12 \sqrt{23}\, \sqrt{3}\right)^{\frac{1}{3}}}{6}+\frac{2}{3}\right)^{-n}}{317400}\\-\frac{\left(n +2\right) \left(n -1\right)}{2} & \text{otherwise} \end{array}\right.\)

This specification was found using the strategy pack "Point Placements" and has 107 rules.

Found on January 18, 2022.

Finding the specification took 1 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 107 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{4}\! \left(x \right) &= x\\ F_{5}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{13}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{18}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{16}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{17}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{14}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{20}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{24}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{21}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{19}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{38}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{28}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{29}\! \left(x \right)+F_{30}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{14}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{31}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{33}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)+F_{37}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{35}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{36}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{34}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{31}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{39}\! \left(x \right)+F_{40}\! \left(x \right)+F_{93}\! \left(x \right)\\ F_{39}\! \left(x \right) &= 0\\ F_{40}\! \left(x \right) &= F_{4}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{42}\! \left(x \right)+F_{52}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{43}\! \left(x \right)+F_{46}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{44}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{4}\! \left(x \right) F_{45}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{43}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{39}\! \left(x \right)+F_{47}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{4}\! \left(x \right) F_{48}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{49}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{39}\! \left(x \right)+F_{47}\! \left(x \right)+F_{50}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{4}\! \left(x \right) F_{51}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{21}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{53}\! \left(x \right)+F_{74}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{39}\! \left(x \right)+F_{40}\! \left(x \right)+F_{54}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{4}\! \left(x \right) F_{55}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{56}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{39}\! \left(x \right)+F_{54}\! \left(x \right)+F_{57}\! \left(x \right)\\ F_{57}\! \left(x \right) &= F_{4}\! \left(x \right) F_{58}\! \left(x \right)\\ F_{58}\! \left(x \right) &= F_{59}\! \left(x \right)+F_{60}\! \left(x \right)\\ F_{59}\! \left(x \right) &= F_{43}\! \left(x \right)+F_{49}\! \left(x \right)\\ F_{60}\! \left(x \right) &= F_{61}\! \left(x \right)+F_{64}\! \left(x \right)\\ F_{61}\! \left(x \right) &= F_{62}\! \left(x \right)\\ F_{62}\! \left(x \right) &= F_{4}\! \left(x \right) F_{63}\! \left(x \right)\\ F_{63}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{61}\! \left(x \right)\\ F_{64}\! \left(x \right) &= 2 F_{39}\! \left(x \right)+F_{65}\! \left(x \right)+F_{72}\! \left(x \right)\\ F_{65}\! \left(x \right) &= F_{4}\! \left(x \right) F_{66}\! \left(x \right)\\ F_{66}\! \left(x \right) &= F_{67}\! \left(x \right)\\ F_{67}\! \left(x \right) &= F_{68}\! \left(x \right)+F_{70}\! \left(x \right)\\ F_{68}\! \left(x \right) &= F_{69}\! \left(x \right)\\ F_{69}\! \left(x \right) &= F_{26}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{70}\! \left(x \right) &= F_{71}\! \left(x \right)\\ F_{71}\! \left(x \right) &= F_{4}\! \left(x \right) F_{67}\! \left(x \right)\\ F_{72}\! \left(x \right) &= F_{4}\! \left(x \right) F_{73}\! \left(x \right)\\ F_{73}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{64}\! \left(x \right)\\ F_{74}\! \left(x \right) &= 2 F_{39}\! \left(x \right)+F_{75}\! \left(x \right)+F_{90}\! \left(x \right)\\ F_{75}\! \left(x \right) &= F_{4}\! \left(x \right) F_{76}\! \left(x \right)\\ F_{76}\! \left(x \right) &= F_{77}\! \left(x \right)+F_{89}\! \left(x \right)\\ F_{77}\! \left(x \right) &= F_{78}\! \left(x \right)+F_{87}\! \left(x \right)\\ F_{78}\! \left(x \right) &= F_{39}\! \left(x \right)+F_{69}\! \left(x \right)+F_{79}\! \left(x \right)\\ F_{79}\! \left(x \right) &= F_{4}\! \left(x \right) F_{80}\! \left(x \right)\\ F_{80}\! \left(x \right) &= F_{81}\! \left(x \right)+F_{84}\! \left(x \right)\\ F_{81}\! \left(x \right) &= F_{4}\! \left(x \right)+F_{82}\! \left(x \right)\\ F_{82}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{39}\! \left(x \right)+F_{83}\! \left(x \right)\\ F_{83}\! \left(x \right) &= F_{14}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{84}\! \left(x \right) &= F_{78}\! \left(x \right)+F_{85}\! \left(x \right)\\ F_{85}\! \left(x \right) &= 2 F_{39}\! \left(x \right)+F_{75}\! \left(x \right)+F_{86}\! \left(x \right)\\ F_{86}\! \left(x \right) &= F_{31}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{87}\! \left(x \right) &= F_{88}\! \left(x \right)\\ F_{88}\! \left(x \right) &= F_{4}\! \left(x \right) F_{77}\! \left(x \right)\\ F_{89}\! \left(x \right) &= F_{75}\! \left(x \right)\\ F_{90}\! \left(x \right) &= F_{4}\! \left(x \right) F_{91}\! \left(x \right)\\ F_{91}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{92}\! \left(x \right)\\ F_{92}\! \left(x \right) &= 2 F_{39}\! \left(x \right)+F_{65}\! \left(x \right)+F_{90}\! \left(x \right)\\ F_{93}\! \left(x \right) &= F_{4}\! \left(x \right) F_{94}\! \left(x \right)\\ F_{94}\! \left(x \right) &= F_{95}\! \left(x \right)+F_{98}\! \left(x \right)\\ F_{95}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{96}\! \left(x \right)\\ F_{96}\! \left(x \right) &= F_{39}\! \left(x \right)+F_{79}\! \left(x \right)+F_{97}\! \left(x \right)\\ F_{97}\! \left(x \right) &= F_{4}\! \left(x \right) F_{95}\! \left(x \right)\\ F_{98}\! \left(x \right) &= F_{103}\! \left(x \right)+F_{99}\! \left(x \right)\\ F_{99}\! \left(x \right) &= F_{100}\! \left(x \right)+F_{39}\! \left(x \right)+F_{57}\! \left(x \right)\\ F_{100}\! \left(x \right) &= F_{101}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{101}\! \left(x \right) &= F_{102}\! \left(x \right)+F_{34}\! \left(x \right)\\ F_{102}\! \left(x \right) &= F_{99}\! \left(x \right)\\ F_{103}\! \left(x \right) &= F_{104}\! \left(x \right)\\ F_{104}\! \left(x \right) &= F_{105}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{105}\! \left(x \right) &= F_{106}\! \left(x \right)+F_{77}\! \left(x \right)\\ F_{106}\! \left(x \right) &= F_{104}\! \left(x \right)\\ \end{align*}\)