Av(1243, 1342, 2134, 3214)
View Raw Data
Generating Function
\(\displaystyle -\frac{\left(x -1\right) \left(x^{3}+2 x -1\right)}{\left(3 x -1\right) \left(x^{2}-x +1\right)}\)
Counting Sequence
1, 1, 2, 6, 20, 62, 186, 556, 1666, 4998, 14996, 44990, 134970, 404908, 1214722, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(3 x -1\right) \left(x^{2}-x +1\right) F \! \left(x \right)+\left(x -1\right) \left(x^{3}+2 x -1\right) = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 20\)
\(\displaystyle a \! \left(n +3\right) = 3 a \! \left(n \right)-4 a \! \left(n +1\right)+4 a \! \left(n +2\right), \quad n \geq 5\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}1 & n =0\text{ or } n =1 \\ \frac{\left(3 \,\mathrm{I} \sqrt{3}+27\right) \left(\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right)^{-n}}{63}-\frac{\mathrm{I} \left(\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)^{-n} \sqrt{3}}{21}+\frac{16 \,3^{n}}{63}+\\\frac{3 \left(\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)^{-n}}{7} & \text{otherwise} \end{array}\right.\)

This specification was found using the strategy pack "Point Placements" and has 61 rules.

Found on January 18, 2022.

Finding the specification took 1 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 61 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{4}\! \left(x \right) &= x\\ F_{5}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{13}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{16}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{17}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{21}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{23}\! \left(x \right)+F_{46}\! \left(x \right)\\ F_{22}\! \left(x \right) &= 0\\ F_{23}\! \left(x \right) &= F_{24}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{32}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{29}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{28}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{26}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{22}\! \left(x \right)+F_{30}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{31}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{29}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)+F_{36}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{35}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{33}\! \left(x \right)\\ F_{36}\! \left(x \right) &= 2 F_{22}\! \left(x \right)+F_{37}\! \left(x \right)+F_{44}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{38}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{39}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)+F_{42}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{41}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{2}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{43}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{39}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{4}\! \left(x \right) F_{45}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{36}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{4}\! \left(x \right) F_{47}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{48}\! \left(x \right)+F_{59}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{49}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{50}\! \left(x \right)+F_{58}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{4}\! \left(x \right) F_{51}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{52}\! \left(x \right)+F_{55}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{4}\! \left(x \right)+F_{53}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{22}\! \left(x \right)+F_{54}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{4}\! \left(x \right) F_{7}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{40}\! \left(x \right)+F_{56}\! \left(x \right)\\ F_{56}\! \left(x \right) &= 2 F_{22}\! \left(x \right)+F_{37}\! \left(x \right)+F_{57}\! \left(x \right)\\ F_{57}\! \left(x \right) &= F_{21}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{58}\! \left(x \right) &= F_{4}\! \left(x \right) F_{48}\! \left(x \right)\\ F_{59}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{60}\! \left(x \right)\\ F_{60}\! \left(x \right) &= F_{37}\! \left(x \right)\\ \end{align*}\)