Av(1243, 1342, 2134, 2413)
Generating Function
\(\displaystyle \frac{\left(2 x -1\right) \left(x^{3}-2 x^{2}+3 x -1\right)}{5 x^{4}-11 x^{3}+12 x^{2}-6 x +1}\)
Counting Sequence
1, 1, 2, 6, 20, 65, 206, 646, 2019, 6303, 19666, 61339, 191280, 596423, 1859577, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(5 x^{4}-11 x^{3}+12 x^{2}-6 x +1\right) F \! \left(x \right)-\left(2 x -1\right) \left(x^{3}-2 x^{2}+3 x -1\right) = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 20\)
\(\displaystyle a \! \left(n +4\right) = -5 a \! \left(n \right)+11 a \! \left(n +1\right)-12 a \! \left(n +2\right)+6 a \! \left(n +3\right), \quad n \geq 5\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 20\)
\(\displaystyle a \! \left(n +4\right) = -5 a \! \left(n \right)+11 a \! \left(n +1\right)-12 a \! \left(n +2\right)+6 a \! \left(n +3\right), \quad n \geq 5\)
Explicit Closed Form
\(\displaystyle -\frac{835 \left(\underset{\alpha =\mathit{RootOf} \left(5 Z^{4}-11 Z^{3}+12 Z^{2}-6 Z +1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n +2}\right)}{643}+\frac{1436 \left(\underset{\alpha =\mathit{RootOf} \left(5 Z^{4}-11 Z^{3}+12 Z^{2}-6 Z +1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n +1}\right)}{643}-\frac{1108 \left(\underset{\alpha =\mathit{RootOf} \left(5 Z^{4}-11 Z^{3}+12 Z^{2}-6 Z +1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n}\right)}{643}+\frac{282 \left(\underset{\alpha =\mathit{RootOf} \left(5 Z^{4}-11 Z^{3}+12 Z^{2}-6 Z +1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n -1}\right)}{643}+\left(\left\{\begin{array}{cc}\frac{2}{5} & n =0 \\ 0 & \text{otherwise} \end{array}\right.\right)\)
This specification was found using the strategy pack "Point Placements" and has 78 rules.
Found on January 18, 2022.Finding the specification took 2 seconds.
This tree is too big to show here. Click to view tree on new page.
Copy 78 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{12}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{12}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{10}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{12}\! \left(x \right) &= x\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{17}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{12}\! \left(x \right) F_{16}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{14}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{19}\! \left(x \right)+F_{23}\! \left(x \right)\\
F_{18}\! \left(x \right) &= 0\\
F_{19}\! \left(x \right) &= F_{12}\! \left(x \right) F_{20}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{21}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{19}\! \left(x \right)+F_{22}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{12}\! \left(x \right) F_{14}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{12}\! \left(x \right) F_{13}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{25}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{26}\! \left(x \right)+F_{65}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{12}\! \left(x \right) F_{27}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{41}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{29}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{12}\! \left(x \right) F_{31}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{35}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{33}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{12}\! \left(x \right) F_{32}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{36}\! \left(x \right)+F_{39}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{37}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{12}\! \left(x \right) F_{38}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{36}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{12}\! \left(x \right) F_{35}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{42}\! \left(x \right)+F_{45}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{26}\! \left(x \right)+F_{43}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{12}\! \left(x \right) F_{44}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{42}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{46}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{12}\! \left(x \right) F_{47}\! \left(x \right)\\
F_{47}\! \left(x \right) &= F_{48}\! \left(x \right)+F_{59}\! \left(x \right)\\
F_{48}\! \left(x \right) &= F_{49}\! \left(x \right)+F_{57}\! \left(x \right)\\
F_{49}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{50}\! \left(x \right)+F_{56}\! \left(x \right)\\
F_{50}\! \left(x \right) &= F_{12}\! \left(x \right) F_{51}\! \left(x \right)\\
F_{51}\! \left(x \right) &= F_{52}\! \left(x \right)+F_{54}\! \left(x \right)\\
F_{52}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{53}\! \left(x \right)\\
F_{53}\! \left(x \right) &= F_{30}\! \left(x \right)\\
F_{54}\! \left(x \right) &= F_{49}\! \left(x \right)+F_{55}\! \left(x \right)\\
F_{55}\! \left(x \right) &= F_{46}\! \left(x \right)\\
F_{56}\! \left(x \right) &= F_{12}\! \left(x \right) F_{2}\! \left(x \right)\\
F_{57}\! \left(x \right) &= F_{58}\! \left(x \right)\\
F_{58}\! \left(x \right) &= F_{12}\! \left(x \right) F_{48}\! \left(x \right)\\
F_{59}\! \left(x \right) &= F_{60}\! \left(x \right)+F_{63}\! \left(x \right)\\
F_{60}\! \left(x \right) &= F_{61}\! \left(x \right)\\
F_{61}\! \left(x \right) &= F_{12}\! \left(x \right) F_{62}\! \left(x \right)\\
F_{62}\! \left(x \right) &= F_{49}\! \left(x \right)+F_{60}\! \left(x \right)\\
F_{63}\! \left(x \right) &= F_{64}\! \left(x \right)\\
F_{64}\! \left(x \right) &= F_{12}\! \left(x \right) F_{59}\! \left(x \right)\\
F_{65}\! \left(x \right) &= F_{12}\! \left(x \right) F_{66}\! \left(x \right)\\
F_{66}\! \left(x \right) &= F_{67}\! \left(x \right)+F_{70}\! \left(x \right)\\
F_{67}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{68}\! \left(x \right)\\
F_{68}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{50}\! \left(x \right)+F_{69}\! \left(x \right)\\
F_{69}\! \left(x \right) &= F_{12}\! \left(x \right) F_{67}\! \left(x \right)\\
F_{70}\! \left(x \right) &= F_{42}\! \left(x \right)+F_{71}\! \left(x \right)\\
F_{71}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{72}\! \left(x \right)+F_{73}\! \left(x \right)+F_{77}\! \left(x \right)\\
F_{72}\! \left(x \right) &= 0\\
F_{73}\! \left(x \right) &= F_{12}\! \left(x \right) F_{74}\! \left(x \right)\\
F_{74}\! \left(x \right) &= F_{49}\! \left(x \right)+F_{75}\! \left(x \right)\\
F_{75}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{72}\! \left(x \right)+F_{73}\! \left(x \right)+F_{76}\! \left(x \right)\\
F_{76}\! \left(x \right) &= F_{12}\! \left(x \right) F_{42}\! \left(x \right)\\
F_{77}\! \left(x \right) &= F_{12}\! \left(x \right) F_{70}\! \left(x \right)\\
\end{align*}\)