Av(1243, 1342, 2134, 2341, 3124)
Generating Function
\(\displaystyle \frac{\left(x^{4}-x^{3}-2 x^{2}+2 x -1\right) \sqrt{1-4 x}+2 x^{5}-3 x^{4}-x^{3}+2 x^{2}-2 x +1}{2 x \left(x -1\right)^{2}}\)
Counting Sequence
1, 1, 2, 6, 19, 57, 174, 549, 1788, 5977, 20395, 70732, 248533, 882716, 3163553, ...
Implicit Equation for the Generating Function
\(\displaystyle x \left(x -1\right)^{4} F \left(x
\right)^{2}-\left(2 x^{5}-3 x^{4}-x^{3}+2 x^{2}-2 x +1\right) \left(x -1\right)^{2} F \! \left(x \right)+x^{9}-2 x^{8}-x^{7}+x^{6}+4 x^{5}-x^{4}-5 x^{3}+7 x^{2}-4 x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 57\)
\(\displaystyle a \! \left(6\right) = 174\)
\(\displaystyle a \! \left(7\right) = 549\)
\(\displaystyle a \! \left(8\right) = 1788\)
\(\displaystyle a \! \left(9\right) = 5977\)
\(\displaystyle a \! \left(n +6\right) = \frac{2 \left(-3+2 n \right) a \! \left(n \right)}{7+n}-\frac{\left(-8+9 n \right) a \! \left(1+n \right)}{7+n}-\frac{\left(21+2 n \right) a \! \left(n +2\right)}{7+n}+\frac{\left(55+17 n \right) a \! \left(n +3\right)}{7+n}-\frac{8 \left(9+2 n \right) a \! \left(n +4\right)}{7+n}+\frac{\left(40+7 n \right) a \! \left(n +5\right)}{7+n}+\frac{2}{7+n}, \quad n \geq 10\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 57\)
\(\displaystyle a \! \left(6\right) = 174\)
\(\displaystyle a \! \left(7\right) = 549\)
\(\displaystyle a \! \left(8\right) = 1788\)
\(\displaystyle a \! \left(9\right) = 5977\)
\(\displaystyle a \! \left(n +6\right) = \frac{2 \left(-3+2 n \right) a \! \left(n \right)}{7+n}-\frac{\left(-8+9 n \right) a \! \left(1+n \right)}{7+n}-\frac{\left(21+2 n \right) a \! \left(n +2\right)}{7+n}+\frac{\left(55+17 n \right) a \! \left(n +3\right)}{7+n}-\frac{8 \left(9+2 n \right) a \! \left(n +4\right)}{7+n}+\frac{\left(40+7 n \right) a \! \left(n +5\right)}{7+n}+\frac{2}{7+n}, \quad n \geq 10\)
This specification was found using the strategy pack "Pattern Point Placements Expand Verified" and has 35 rules.
Found on January 21, 2022.Finding the specification took 194 seconds.
Copy 35 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{10}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)+F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{10}\! \left(x \right) &= x\\
F_{11}\! \left(x \right) &= F_{10}\! \left(x \right) F_{12}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{13}\! \left(x , 1\right)\\
F_{13}\! \left(x , y\right) &= \frac{y F_{14}\! \left(x , y\right)-F_{14}\! \left(x , 1\right)}{-1+y}\\
F_{14}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{15}\! \left(x , y\right)+F_{17}\! \left(x , y\right)\\
F_{15}\! \left(x , y\right) &= F_{14}\! \left(x , y\right) F_{16}\! \left(x , y\right)\\
F_{16}\! \left(x , y\right) &= y x\\
F_{17}\! \left(x , y\right) &= F_{10}\! \left(x \right) F_{13}\! \left(x , y\right)\\
F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{10}\! \left(x \right) F_{20}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{26}\! \left(x \right)\\
F_{21}\! \left(x \right) &= \frac{F_{22}\! \left(x \right)}{F_{10}\! \left(x \right)}\\
F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)\\
F_{23}\! \left(x \right) &= -F_{5}\! \left(x \right)+F_{24}\! \left(x \right)\\
F_{24}\! \left(x \right) &= \frac{F_{25}\! \left(x \right)}{F_{10}\! \left(x \right)}\\
F_{25}\! \left(x \right) &= F_{7}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{28}\! \left(x \right) F_{6}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{29}\! \left(x \right)+F_{32}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{30} \left(x \right)^{2}\\
F_{30}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{31}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{10}\! \left(x \right) F_{30}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{10}\! \left(x \right) F_{34}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{32}\! \left(x \right)\\
\end{align*}\)
This specification was found using the strategy pack "Insertion Point Row And Col Placements Expand Verified" and has 75 rules.
Found on January 21, 2022.Finding the specification took 32 seconds.
Copy 75 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{10}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)+F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{10}\! \left(x \right) &= x\\
F_{11}\! \left(x \right) &= F_{10}\! \left(x \right) F_{12}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{13}\! \left(x , 1\right)\\
F_{13}\! \left(x , y\right) &= -\frac{-y F_{14}\! \left(x , y\right)+F_{14}\! \left(x , 1\right)}{-1+y}\\
F_{14}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{15}\! \left(x , y\right)+F_{17}\! \left(x , y\right)\\
F_{15}\! \left(x , y\right) &= F_{14}\! \left(x , y\right) F_{16}\! \left(x , y\right)\\
F_{16}\! \left(x , y\right) &= y x\\
F_{17}\! \left(x , y\right) &= F_{10}\! \left(x \right) F_{13}\! \left(x , y\right)\\
F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{41}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{10}\! \left(x \right) F_{21}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{33}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{23}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{10}\! \left(x \right) F_{25}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{29}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{27}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{10}\! \left(x \right) F_{26}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{31}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{10}\! \left(x \right) F_{32}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{30}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{34}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{35}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{10}\! \left(x \right) F_{36}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{29}\! \left(x \right)+F_{37}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{38}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{39}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{10}\! \left(x \right) F_{40}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{38}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{42}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{10}\! \left(x \right) F_{43}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{44}\! \left(x \right)+F_{59}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{45}\! \left(x \right)+F_{49}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{46}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{47}\! \left(x \right)\\
F_{47}\! \left(x \right) &= F_{10}\! \left(x \right) F_{48}\! \left(x \right)\\
F_{48}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{46}\! \left(x \right)\\
F_{49}\! \left(x \right) &= F_{50}\! \left(x \right)+F_{56}\! \left(x \right)\\
F_{50}\! \left(x \right) &= F_{51}\! \left(x \right)+F_{52}\! \left(x \right)+F_{54}\! \left(x \right)\\
F_{51}\! \left(x \right) &= 0\\
F_{52}\! \left(x \right) &= F_{10}\! \left(x \right) F_{53}\! \left(x \right)\\
F_{53}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{50}\! \left(x \right)\\
F_{54}\! \left(x \right) &= F_{10}\! \left(x \right) F_{55}\! \left(x \right)\\
F_{55}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{50}\! \left(x \right)\\
F_{56}\! \left(x \right) &= F_{57}\! \left(x \right)\\
F_{57}\! \left(x \right) &= F_{10}\! \left(x \right) F_{58}\! \left(x \right)\\
F_{58}\! \left(x \right) &= F_{34}\! \left(x \right)+F_{56}\! \left(x \right)\\
F_{59}\! \left(x \right) &= F_{60}\! \left(x \right)+F_{64}\! \left(x \right)\\
F_{60}\! \left(x \right) &= F_{61}\! \left(x \right)\\
F_{61}\! \left(x \right) &= F_{22}\! \left(x \right) F_{62}\! \left(x \right)\\
F_{62}\! \left(x \right) &= -F_{32}\! \left(x \right)+F_{63}\! \left(x \right)\\
F_{63}\! \left(x \right) &= \frac{F_{6}\! \left(x \right)}{F_{10}\! \left(x \right)}\\
F_{64}\! \left(x \right) &= F_{65}\! \left(x \right)+F_{73}\! \left(x \right)\\
F_{65}\! \left(x \right) &= -F_{62}\! \left(x \right)+F_{66}\! \left(x \right)\\
F_{66}\! \left(x \right) &= -F_{53}\! \left(x \right)+F_{67}\! \left(x \right)\\
F_{67}\! \left(x \right) &= \frac{F_{68}\! \left(x \right)}{F_{10}\! \left(x \right)}\\
F_{68}\! \left(x \right) &= F_{69}\! \left(x \right)\\
F_{69}\! \left(x \right) &= -F_{30}\! \left(x \right)+F_{70}\! \left(x \right)\\
F_{70}\! \left(x \right) &= -F_{5}\! \left(x \right)+F_{71}\! \left(x \right)\\
F_{71}\! \left(x \right) &= \frac{F_{72}\! \left(x \right)}{F_{10}\! \left(x \right)}\\
F_{72}\! \left(x \right) &= F_{7}\! \left(x \right)\\
F_{73}\! \left(x \right) &= F_{74}\! \left(x \right)\\
F_{74}\! \left(x \right) &= F_{30} \left(x \right)^{2} F_{62}\! \left(x \right)\\
\end{align*}\)
This specification was found using the strategy pack "Point And Row Placements Req Corrob Expand Verified" and has 94 rules.
Found on January 21, 2022.Finding the specification took 115 seconds.
This tree is too big to show here. Click to view tree on new page.
Copy 94 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{14}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{5}\! \left(x \right)+F_{93}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{14}\! \left(x \right) F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{5}\! \left(x \right)+F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{14}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= \frac{F_{10}\! \left(x \right)}{F_{14}\! \left(x \right)}\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right) F_{14}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{13}\! \left(x \right)+F_{15}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{12}\! \left(x \right) F_{14}\! \left(x \right)\\
F_{14}\! \left(x \right) &= x\\
F_{15}\! \left(x \right) &= F_{14}\! \left(x \right) F_{16}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{17}\! \left(x , 1\right)\\
F_{17}\! \left(x , y\right) &= -\frac{-y F_{18}\! \left(x , y\right)+F_{18}\! \left(x , 1\right)}{-1+y}\\
F_{18}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{19}\! \left(x , y\right)+F_{21}\! \left(x , y\right)\\
F_{19}\! \left(x , y\right) &= F_{18}\! \left(x , y\right) F_{20}\! \left(x , y\right)\\
F_{20}\! \left(x , y\right) &= y x\\
F_{21}\! \left(x , y\right) &= F_{14}\! \left(x \right) F_{17}\! \left(x , y\right)\\
F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{25}\! \left(x \right)\\
F_{23}\! \left(x \right) &= -F_{24}\! \left(x \right)+F_{9}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{10}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{14}\! \left(x \right) F_{27}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{89}\! \left(x \right)\\
F_{28}\! \left(x \right) &= \frac{F_{29}\! \left(x \right)}{F_{14}\! \left(x \right)}\\
F_{29}\! \left(x \right) &= -F_{70}\! \left(x \right)-F_{71}\! \left(x \right)+F_{30}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{59}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{14}\! \left(x \right) F_{33}\! \left(x \right)\\
F_{33}\! \left(x \right) &= \frac{F_{34}\! \left(x \right)}{F_{14}\! \left(x \right)}\\
F_{34}\! \left(x \right) &= F_{35}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{36}\! \left(x \right)+F_{48}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{23}\! \left(x \right) F_{37}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{38}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{39}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{14}\! \left(x \right) F_{40}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{41}\! \left(x \right)+F_{44}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{42}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{43}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{14}\! \left(x \right) F_{41}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{45}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{46}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{14}\! \left(x \right) F_{47}\! \left(x \right)\\
F_{47}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{45}\! \left(x \right)\\
F_{48}\! \left(x \right) &= F_{14}\! \left(x \right) F_{49}\! \left(x \right)\\
F_{49}\! \left(x \right) &= -F_{52}\! \left(x \right)+F_{50}\! \left(x \right)\\
F_{50}\! \left(x \right) &= \frac{F_{51}\! \left(x \right)}{F_{14}\! \left(x \right)}\\
F_{51}\! \left(x \right) &= -F_{23}\! \left(x \right)+F_{52}\! \left(x \right)\\
F_{52}\! \left(x \right) &= -F_{58}\! \left(x \right)+F_{53}\! \left(x \right)\\
F_{53}\! \left(x \right) &= \frac{F_{54}\! \left(x \right)}{F_{14}\! \left(x \right)}\\
F_{54}\! \left(x \right) &= F_{55}\! \left(x \right)\\
F_{55}\! \left(x \right) &= F_{14}\! \left(x \right) F_{56}\! \left(x \right)\\
F_{56}\! \left(x \right) &= \frac{F_{57}\! \left(x \right)}{F_{14}\! \left(x \right)}\\
F_{57}\! \left(x \right) &= F_{23}\! \left(x \right)\\
F_{58}\! \left(x \right) &= F_{24}\! \left(x \right) F_{47}\! \left(x \right)\\
F_{59}\! \left(x \right) &= F_{60}\! \left(x \right)\\
F_{60}\! \left(x \right) &= F_{23}\! \left(x \right) F_{61}\! \left(x \right)\\
F_{61}\! \left(x \right) &= F_{62}\! \left(x \right)\\
F_{62}\! \left(x \right) &= F_{14}\! \left(x \right) F_{63}\! \left(x \right)\\
F_{63}\! \left(x \right) &= F_{41}\! \left(x \right)+F_{64}\! \left(x \right)\\
F_{64}\! \left(x \right) &= F_{61}\! \left(x \right)+F_{65}\! \left(x \right)\\
F_{65}\! \left(x \right) &= F_{66}\! \left(x \right)\\
F_{66}\! \left(x \right) &= F_{14}\! \left(x \right) F_{67}\! \left(x \right)\\
F_{67}\! \left(x \right) &= F_{68}\! \left(x \right)+F_{69}\! \left(x \right)\\
F_{68}\! \left(x \right) &= F_{14}\! \left(x \right)\\
F_{69}\! \left(x \right) &= F_{66}\! \left(x \right)\\
F_{70}\! \left(x \right) &= 0\\
F_{71}\! \left(x \right) &= F_{14}\! \left(x \right) F_{72}\! \left(x \right)\\
F_{72}\! \left(x \right) &= \frac{F_{73}\! \left(x \right)}{F_{14}\! \left(x \right)}\\
F_{73}\! \left(x \right) &= F_{74}\! \left(x \right)\\
F_{74}\! \left(x \right) &= -F_{79}\! \left(x \right)+F_{75}\! \left(x \right)\\
F_{75}\! \left(x \right) &= F_{76}\! \left(x \right)+F_{9}\! \left(x \right)\\
F_{76}\! \left(x \right) &= F_{77}\! \left(x \right)\\
F_{77}\! \left(x \right) &= F_{14}\! \left(x \right) F_{78}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{78}\! \left(x \right) &= F_{41}\! \left(x \right)+F_{45}\! \left(x \right)\\
F_{79}\! \left(x \right) &= F_{41}\! \left(x \right)+F_{80}\! \left(x \right)\\
F_{80}\! \left(x \right) &= F_{45}\! \left(x \right)+F_{81}\! \left(x \right)\\
F_{81}\! \left(x \right) &= F_{70}\! \left(x \right)+F_{82}\! \left(x \right)+F_{86}\! \left(x \right)\\
F_{82}\! \left(x \right) &= F_{14}\! \left(x \right) F_{83}\! \left(x \right)\\
F_{83}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{84}\! \left(x \right)\\
F_{84}\! \left(x \right) &= F_{70}\! \left(x \right)+F_{82}\! \left(x \right)+F_{85}\! \left(x \right)\\
F_{85}\! \left(x \right) &= F_{14}\! \left(x \right) F_{45}\! \left(x \right)\\
F_{86}\! \left(x \right) &= F_{14}\! \left(x \right) F_{87}\! \left(x \right)\\
F_{87}\! \left(x \right) &= F_{45}\! \left(x \right)+F_{88}\! \left(x \right)\\
F_{88}\! \left(x \right) &= F_{86}\! \left(x \right)\\
F_{89}\! \left(x \right) &= \frac{F_{90}\! \left(x \right)}{F_{14}\! \left(x \right)}\\
F_{90}\! \left(x \right) &= -F_{91}\! \left(x \right)-2 F_{70}\! \left(x \right)+F_{76}\! \left(x \right)\\
F_{91}\! \left(x \right) &= F_{92}\! \left(x \right)\\
F_{92}\! \left(x \right) &= F_{14}\! \left(x \right) F_{41}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{93}\! \left(x \right) &= F_{14}\! \left(x \right) F_{75}\! \left(x \right)\\
\end{align*}\)
This specification was found using the strategy pack "Row And Col Placements Req Corrob Expand Verified" and has 45 rules.
Found on January 21, 2022.Finding the specification took 82 seconds.
Copy 45 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{14}\! \left(x \right) F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{4}\! \left(x \right)+F_{44}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{14}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{4}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{14}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= \frac{F_{9}\! \left(x \right)}{F_{14}\! \left(x \right)}\\
F_{9}\! \left(x \right) &= -F_{1}\! \left(x \right)+F_{10}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right) F_{14}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{13}\! \left(x \right)+F_{15}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{12}\! \left(x \right) F_{14}\! \left(x \right)\\
F_{14}\! \left(x \right) &= x\\
F_{15}\! \left(x \right) &= F_{14}\! \left(x \right) F_{16}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{17}\! \left(x , 1\right)\\
F_{17}\! \left(x , y\right) &= -\frac{-y F_{18}\! \left(x , y\right)+F_{18}\! \left(x , 1\right)}{-1+y}\\
F_{18}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{19}\! \left(x , y\right)+F_{21}\! \left(x , y\right)\\
F_{19}\! \left(x , y\right) &= F_{18}\! \left(x , y\right) F_{20}\! \left(x , y\right)\\
F_{20}\! \left(x , y\right) &= y x\\
F_{21}\! \left(x , y\right) &= F_{14}\! \left(x \right) F_{17}\! \left(x , y\right)\\
F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{14}\! \left(x \right) F_{24}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{43}\! \left(x \right)\\
F_{25}\! \left(x \right) &= \frac{F_{26}\! \left(x \right)}{F_{14}\! \left(x \right)}\\
F_{26}\! \left(x \right) &= -F_{8}\! \left(x \right)+F_{27}\! \left(x \right)\\
F_{27}\! \left(x \right) &= \frac{F_{28}\! \left(x \right)}{F_{14}\! \left(x \right)}\\
F_{28}\! \left(x \right) &= -F_{1}\! \left(x \right)-F_{39}\! \left(x \right)-F_{41}\! \left(x \right)+F_{29}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{8}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{31}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{14}\! \left(x \right) F_{32}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)+F_{36}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{34}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{35}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{14}\! \left(x \right) F_{33}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{37}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{14}\! \left(x \right) F_{38}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{36}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{14}\! \left(x \right) F_{40}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{28}\! \left(x \right)+F_{39}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{42}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{14}\! \left(x \right) F_{33}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{43}\! \left(x \right) &= -F_{8}\! \left(x \right)+F_{40}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{14}\! \left(x \right) F_{29}\! \left(x \right)\\
\end{align*}\)
This specification was found using the strategy pack "Insertion Row And Col Placements Expand Verified" and has 67 rules.
Found on January 21, 2022.Finding the specification took 23 seconds.
Copy 67 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{11}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{11}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{10}\! \left(x \right)+F_{12}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{11}\! \left(x \right) &= x\\
F_{12}\! \left(x \right) &= F_{11}\! \left(x \right) F_{13}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x , 1\right)\\
F_{14}\! \left(x , y\right) &= -\frac{-y F_{15}\! \left(x , y\right)+F_{15}\! \left(x , 1\right)}{-1+y}\\
F_{15}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{16}\! \left(x , y\right)+F_{18}\! \left(x , y\right)\\
F_{16}\! \left(x , y\right) &= F_{15}\! \left(x , y\right) F_{17}\! \left(x , y\right)\\
F_{17}\! \left(x , y\right) &= y x\\
F_{18}\! \left(x , y\right) &= F_{11}\! \left(x \right) F_{14}\! \left(x , y\right)\\
F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{42}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{11}\! \left(x \right) F_{22}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{34}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{24}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{11}\! \left(x \right) F_{26}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{30}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{28}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{29}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{11}\! \left(x \right) F_{27}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{31}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{11}\! \left(x \right) F_{33}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{31}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{35}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{36}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{11}\! \left(x \right) F_{37}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{38}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{39}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{11}\! \left(x \right) F_{41}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{39}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{43}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{11}\! \left(x \right) F_{44}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{45}\! \left(x \right)+F_{49}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{23}\! \left(x \right) F_{46}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{47}\! \left(x \right)\\
F_{47}\! \left(x \right) &= -F_{33}\! \left(x \right)+F_{48}\! \left(x \right)\\
F_{48}\! \left(x \right) &= \frac{F_{6}\! \left(x \right)}{F_{11}\! \left(x \right)}\\
F_{49}\! \left(x \right) &= F_{50}\! \left(x \right)+F_{51}\! \left(x \right)\\
F_{50}\! \left(x \right) &= F_{31} \left(x \right)^{2}\\
F_{51}\! \left(x \right) &= F_{52}\! \left(x \right)+F_{56}\! \left(x \right)\\
F_{52}\! \left(x \right) &= F_{53}\! \left(x \right)\\
F_{53}\! \left(x \right) &= F_{11}\! \left(x \right) F_{54}\! \left(x \right)\\
F_{54}\! \left(x \right) &= F_{49}\! \left(x \right)+F_{55}\! \left(x \right)\\
F_{55}\! \left(x \right) &= F_{33}\! \left(x \right) F_{46}\! \left(x \right)\\
F_{56}\! \left(x \right) &= -F_{63}\! \left(x \right)+F_{57}\! \left(x \right)\\
F_{57}\! \left(x \right) &= -F_{62}\! \left(x \right)+F_{58}\! \left(x \right)\\
F_{58}\! \left(x \right) &= -F_{47}\! \left(x \right)+F_{59}\! \left(x \right)\\
F_{59}\! \left(x \right) &= \frac{F_{60}\! \left(x \right)}{F_{11}\! \left(x \right)}\\
F_{60}\! \left(x \right) &= F_{61}\! \left(x \right)\\
F_{61}\! \left(x \right) &= -F_{7}\! \left(x \right)+F_{47}\! \left(x \right)\\
F_{62}\! \left(x \right) &= F_{31}\! \left(x \right) F_{33}\! \left(x \right)\\
F_{63}\! \left(x \right) &= F_{64}\! \left(x \right)\\
F_{64}\! \left(x \right) &= F_{11}\! \left(x \right) F_{65}\! \left(x \right)\\
F_{65}\! \left(x \right) &= F_{46}\! \left(x \right)+F_{66}\! \left(x \right)\\
F_{66}\! \left(x \right) &= F_{50}\! \left(x \right)+F_{57}\! \left(x \right)\\
\end{align*}\)