Av(1243, 1342, 2134, 2143, 3214)
View Raw Data
Generating Function
\(\displaystyle \frac{\left(2 x -1\right) \left(x -1\right)}{\left(x^{2}-x +1\right) \left(x^{3}-3 x +1\right)}\)
Counting Sequence
1, 1, 2, 6, 19, 56, 161, 462, 1329, 3827, 11021, 31735, 91377, 263108, 757588, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x^{2}-x +1\right) \left(x^{3}-3 x +1\right) F \! \left(x \right)-\left(2 x -1\right) \left(x -1\right) = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(n +5\right) = -a \! \left(n \right)+a \! \left(n +1\right)+2 a \! \left(n +2\right)-4 a \! \left(n +3\right)+4 a \! \left(n +4\right), \quad n \geq 5\)
Explicit Closed Form
\(\displaystyle \frac{\left(\mathrm{I} \sqrt{3}\, \left(-4+4 \,\mathrm{I} \sqrt{3}\right)^{\frac{1}{3}}-\left(-4+4 \,\mathrm{I} \sqrt{3}\right)^{\frac{2}{3}}+\left(-4+4 \,\mathrm{I} \sqrt{3}\right)^{\frac{1}{3}}-4\right) \left(\left(\frac{\mathrm{I} \sqrt{3}\, \left(-4+4 \,\mathrm{I} \sqrt{3}\right)^{\frac{1}{3}}}{2}+\frac{\left(-4+4 \,\mathrm{I} \sqrt{3}\right)^{\frac{1}{3}}}{2}-\frac{\left(-4+4 \,\mathrm{I} \sqrt{3}\right)^{\frac{2}{3}}}{2}+2\right) \left(\frac{\left(-4+4 \,\mathrm{I} \sqrt{3}\right)^{\frac{1}{3}}}{2}-\frac{\left(-4+4 \,\mathrm{I} \sqrt{3}\right)^{\frac{2}{3}}}{8}-\frac{\mathrm{I} \left(-4+4 \,\mathrm{I} \sqrt{3}\right)^{\frac{2}{3}} \sqrt{3}}{8}\right)^{-n}+\left(-2 \left(\left(-4+4 \,\mathrm{I} \sqrt{3}\right)^{\frac{1}{3}} \left(\left(-4+4 \,\mathrm{I} \sqrt{3}\right)^{\frac{1}{3}}+2\right) \left(-1+\mathrm{I} \sqrt{3}\right)\right)^{-n} \left(-2 \left(-4+4 \,\mathrm{I} \sqrt{3}\right)^{\frac{1}{3}} \left(\mathrm{I} \sqrt{3}-\left(-4+4 \,\mathrm{I} \sqrt{3}\right)^{\frac{1}{3}}+1\right)\right)^{n}+\frac{\left(-1+\mathrm{I} \sqrt{3}\right) \left(\left(-4+4 \,\mathrm{I} \sqrt{3}\right)^{\frac{1}{3}}+\frac{\left(-4+4 \,\mathrm{I} \sqrt{3}\right)^{\frac{2}{3}}}{2}\right)}{2}\right) \left(-\frac{\left(-4+4 \,\mathrm{I} \sqrt{3}\right)^{\frac{1}{3}} \left(\mathrm{I} \sqrt{3}-\left(-4+4 \,\mathrm{I} \sqrt{3}\right)^{\frac{1}{3}}+1\right)}{4}\right)^{-n}+\left(\left(\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)^{-n}+\left(\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right)^{-n}\right) \left(\mathrm{I} \sqrt{3}\, \left(-4+4 \,\mathrm{I} \sqrt{3}\right)^{\frac{1}{3}}+\frac{\left(\mathrm{I} \sqrt{3}-3\right) \left(-4+4 \,\mathrm{I} \sqrt{3}\right)^{\frac{2}{3}}}{4}\right)\right)}{72}\)

This specification was found using the strategy pack "Point Placements" and has 45 rules.

Found on January 18, 2022.

Finding the specification took 1 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 45 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{4}\! \left(x \right) &= x\\ F_{5}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{13}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{16}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{17}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{21}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{23}\! \left(x \right)+F_{38}\! \left(x \right)\\ F_{22}\! \left(x \right) &= 0\\ F_{23}\! \left(x \right) &= F_{24}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{28}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{22}\! \left(x \right)+F_{27}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{4}\! \left(x \right) F_{7}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{29}\! \left(x \right)+F_{31}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{2}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{31}\! \left(x \right) &= 2 F_{22}\! \left(x \right)+F_{32}\! \left(x \right)+F_{37}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{33}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{29}\! \left(x \right)+F_{35}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{36}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{34}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{21}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{39}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)+F_{43}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{41}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{23}\! \left(x \right)+F_{42}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{4}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{44}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{32}\! \left(x \right)\\ \end{align*}\)