Av(1243, 1342, 1432, 4132)
Generating Function
\(\displaystyle \frac{\left(x -1\right) \sqrt{-4 x +1}-2 x^{2}+5 x -1}{2 x^{3}-8 x^{2}+10 x -2}\)
Counting Sequence
1, 1, 2, 6, 20, 69, 243, 869, 3145, 11491, 42312, 156807, 584288, 2187298, 8221257, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x^{3}-4 x^{2}+5 x -1\right) F \left(x
\right)^{2}+\left(2 x^{2}-5 x +1\right) F \! \left(x \right)+x = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 20\)
\(\displaystyle a \! \left(n +5\right) = \frac{2 \left(3+2 n \right) a \! \left(n \right)}{n +5}-\frac{\left(41+21 n \right) a \! \left(n +1\right)}{n +5}+\frac{\left(103+41 n \right) a \! \left(n +2\right)}{n +5}-\frac{3 \left(37+11 n \right) a \! \left(n +3\right)}{n +5}+\frac{2 \left(21+5 n \right) a \! \left(n +4\right)}{n +5}, \quad n \geq 5\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 20\)
\(\displaystyle a \! \left(n +5\right) = \frac{2 \left(3+2 n \right) a \! \left(n \right)}{n +5}-\frac{\left(41+21 n \right) a \! \left(n +1\right)}{n +5}+\frac{\left(103+41 n \right) a \! \left(n +2\right)}{n +5}-\frac{3 \left(37+11 n \right) a \! \left(n +3\right)}{n +5}+\frac{2 \left(21+5 n \right) a \! \left(n +4\right)}{n +5}, \quad n \geq 5\)
This specification was found using the strategy pack "Point Placements" and has 18 rules.
Found on July 23, 2021.Finding the specification took 4 seconds.
Copy 18 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{12}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{12}\! \left(x \right) F_{15}\! \left(x \right) F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{0}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{10}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{9} \left(x \right)^{2} F_{12}\! \left(x \right)\\
F_{12}\! \left(x \right) &= x\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{12}\! \left(x \right) F_{15}\! \left(x \right) F_{7}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{16}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{12}\! \left(x \right) F_{15}\! \left(x \right)\\
\end{align*}\)