Av(1243, 1342, 1432, 3214, 3241)
Generating Function
\(\displaystyle -\frac{x^{5}+4 x^{4}+3 x^{2}-3 x +1}{\left(x^{3}+2 x -1\right) \left(x -1\right)^{2}}\)
Counting Sequence
1, 1, 2, 6, 19, 52, 128, 299, 680, 1524, 3389, 7506, 16590, 36629, 80830, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x^{3}+2 x -1\right) \left(x -1\right)^{2} F \! \left(x \right)+x^{5}+4 x^{4}+3 x^{2}-3 x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 52\)
\(\displaystyle a \! \left(n \right) = -2 a \! \left(n +2\right)+a \! \left(n +3\right)-6 n, \quad n \geq 6\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 52\)
\(\displaystyle a \! \left(n \right) = -2 a \! \left(n +2\right)+a \! \left(n +3\right)-6 n, \quad n \geq 6\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}\frac{5 \left(\left(-\frac{11328 \,576^{n} \left(\frac{\left(-3 \,\mathrm{I} \sqrt{59}-9\right) \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{576}+\frac{\left(\mathrm{I}+\frac{\sqrt{59}}{9}\right) 3^{\frac{5}{6}} \left(36+4 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{64}-\frac{\mathrm{I} \sqrt{3}}{12}-\frac{1}{12}\right)^{-n} \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{-\frac{2 n}{3}} \left(n -\frac{1}{2}\right) \left(-\frac{\left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}-\frac{\mathrm{I} \left(36+4 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}} 3^{\frac{5}{6}}}{12}+\frac{\left(\left(-\mathrm{I} \sqrt{59}-3\right) 18^{\frac{1}{3}}+9 \,\mathrm{I} \,2^{\frac{1}{3}} 3^{\frac{1}{6}}+\sqrt{59}\, 2^{\frac{1}{3}} 3^{\frac{1}{6}}\right) \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}}}{96}\right)^{n}}{5}-\frac{64^{n} \sqrt{59}\, 3^{2 n +\frac{1}{2}} \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{-\frac{2 n}{3}+\frac{2}{3}} \left(8 \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}+\left(-\sqrt{59}\, 2^{\frac{1}{3}} 3^{\frac{1}{6}}+3 \,18^{\frac{1}{3}}\right) \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}}\right)^{-n} \left(\frac{\left(-3 \,\mathrm{I} \sqrt{59}-9\right) \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{48}+\frac{3 \left(\mathrm{I}+\frac{\sqrt{59}}{9}\right) 3^{\frac{5}{6}} \left(36+4 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{16}-\mathrm{I} \sqrt{3}-1\right)^{-n} \left(-48 \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}-48 \,\mathrm{I} \left(36+4 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}} 3^{\frac{5}{6}}+\left(\left(-6 \,\mathrm{I} \sqrt{59}-18\right) 18^{\frac{1}{3}}+54 \,\mathrm{I} \,2^{\frac{1}{3}} 3^{\frac{1}{6}}+6 \sqrt{59}\, 2^{\frac{1}{3}} 3^{\frac{1}{6}}\right) \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}}\right)^{n}}{3}-\left(\frac{\left(-3 \,\mathrm{I} \sqrt{59}-9\right) \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{576}+\frac{\left(\mathrm{I}+\frac{\sqrt{59}}{9}\right) 3^{\frac{5}{6}} \left(36+4 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{64}-\frac{\mathrm{I} \sqrt{3}}{12}-\frac{1}{12}\right)^{-n} \left(-\frac{118 \left(\mathrm{I}-\frac{79 \sqrt{59}}{531}\right) 3^{2 n +\frac{1}{2}} 64^{n} \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{-\frac{2 n}{3}+\frac{1}{3}}}{5}-\frac{767 \left(\mathrm{I}+\frac{15 \sqrt{59}}{767}\right) 3^{2 n +\frac{1}{2}} 64^{n} \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{-\frac{2 n}{3}+\frac{2}{3}}}{90}+\left(3^{2 n +\frac{2}{3}} \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}} \left(\mathrm{I} \sqrt{59}+\frac{767}{45}\right) 2^{6 n +\frac{1}{3}}+\frac{158 \left(\mathrm{I} \sqrt{59}-\frac{177}{79}\right) 3^{2 n +\frac{1}{3}} \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}} 2^{6 n +\frac{2}{3}}}{15}-\frac{1888 \,576^{n}}{15}\right) \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{-\frac{2 n}{3}}\right)\right) \left(-\frac{\left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}+\frac{\mathrm{I} \left(36+4 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}} 3^{\frac{5}{6}}}{12}+\frac{\left(\left(\mathrm{I} \sqrt{59}-3\right) 18^{\frac{1}{3}}-9 \,\mathrm{I} \,2^{\frac{1}{3}} 3^{\frac{1}{6}}+\sqrt{59}\, 2^{\frac{1}{3}} 3^{\frac{1}{6}}\right) \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}}}{96}\right)^{n}+\left(-\frac{\left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}-\frac{\mathrm{I} \left(36+4 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}} 3^{\frac{5}{6}}}{12}+\frac{\left(\left(-\mathrm{I} \sqrt{59}-3\right) 18^{\frac{1}{3}}+9 \,\mathrm{I} \,2^{\frac{1}{3}} 3^{\frac{1}{6}}+\sqrt{59}\, 2^{\frac{1}{3}} 3^{\frac{1}{6}}\right) \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}}}{96}\right)^{n} \left(\frac{1888 \,576^{n} \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{-\frac{2 n}{3}} \left(\frac{\left(-3 \,\mathrm{I} \sqrt{59}-9\right) \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{576}+\frac{\left(\mathrm{I}+\frac{\sqrt{59}}{9}\right) 3^{\frac{5}{6}} \left(36+4 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{64}-\frac{\mathrm{I} \sqrt{3}}{12}-\frac{1}{12}\right)^{-n} \left(8 \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}+\left(-\sqrt{59}\, 2^{\frac{1}{3}} 3^{\frac{1}{6}}+3 \,18^{\frac{1}{3}}\right) \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}}\right)^{-n} \left(-4 \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}+4 \,\mathrm{I} \left(36+4 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}} 3^{\frac{5}{6}}+\frac{\left(\left(\mathrm{I} \sqrt{59}-3\right) 18^{\frac{1}{3}}-9 \,\mathrm{I} \,2^{\frac{1}{3}} 3^{\frac{1}{6}}+\sqrt{59}\, 2^{\frac{1}{3}} 3^{\frac{1}{6}}\right) \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}}}{2}\right)^{n}}{15}+\frac{1534 \left(\frac{\left(-3 \,\mathrm{I} \sqrt{59}-9\right) \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{48}+\frac{3 \left(\mathrm{I}+\frac{\sqrt{59}}{9}\right) 3^{\frac{5}{6}} \left(36+4 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{16}-\mathrm{I} \sqrt{3}-1\right)^{-n} \left(\frac{158 \,3^{2 n +\frac{1}{2}} 64^{n} \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{-\frac{2 n}{3}+\frac{1}{3}} \sqrt{59}}{767}+\left(108+12 \sqrt{59}\, \sqrt{3}\right)^{-\frac{2 n}{3}} \left(3^{2 n +\frac{2}{3}} 2^{6 n +\frac{1}{3}} \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}}-\frac{18 \,3^{2 n +\frac{1}{3}} 2^{6 n +\frac{2}{3}} \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{13}\right)\right) \left(8 \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}+\left(-\sqrt{59}\, 2^{\frac{1}{3}} 3^{\frac{1}{6}}+3 \,18^{\frac{1}{3}}\right) \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}}\right)^{-n} \left(-48 \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}+48 \,\mathrm{I} \left(36+4 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}} 3^{\frac{5}{6}}+\left(\left(6 \,\mathrm{I} \sqrt{59}-18\right) 18^{\frac{1}{3}}-54 \,\mathrm{I} \,2^{\frac{1}{3}} 3^{\frac{1}{6}}+6 \sqrt{59}\, 2^{\frac{1}{3}} 3^{\frac{1}{6}}\right) \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}}\right)^{n}}{45}+\left(-\frac{118 \left(\frac{79 \sqrt{59}}{531}+\mathrm{I}\right) 3^{2 n +\frac{1}{2}} 64^{n} \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{-\frac{2 n}{3}+\frac{1}{3}}}{5}-\frac{767 \left(-\frac{15 \sqrt{59}}{767}+\mathrm{I}\right) 3^{2 n +\frac{1}{2}} 64^{n} \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{-\frac{2 n}{3}+\frac{2}{3}}}{90}+\left(108+12 \sqrt{59}\, \sqrt{3}\right)^{-\frac{2 n}{3}} \left(3^{2 n +\frac{2}{3}} \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}} \left(-\frac{767}{45}+\mathrm{I} \sqrt{59}\right) 2^{6 n +\frac{1}{3}}+\frac{158 \left(\mathrm{I} \sqrt{59}+\frac{177}{79}\right) 3^{2 n +\frac{1}{3}} \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}} 2^{6 n +\frac{2}{3}}}{15}+\frac{1888 \,576^{n}}{15}\right)\right) \left(\frac{\left(-3 \,\mathrm{I} \sqrt{59}-9\right) \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{576}+\frac{\left(\mathrm{I}+\frac{\sqrt{59}}{9}\right) 3^{\frac{5}{6}} \left(36+4 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{64}-\frac{\mathrm{I} \sqrt{3}}{12}-\frac{1}{12}\right)^{-n}\right)\right) \left(\left(3 \,\mathrm{I} \sqrt{59}-9\right) \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}-9 \,3^{\frac{5}{6}} \left(\mathrm{I}-\frac{\sqrt{59}}{9}\right) \left(36+4 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}+48 \,\mathrm{I} \sqrt{3}-48\right)^{-n}}{3776} & n <0 \\ 1 & n =0 \\ \frac{5 \left(\frac{1888 \left(-\frac{\left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}-\frac{\mathrm{I} \left(36+4 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}} 3^{\frac{5}{6}}}{12}+\frac{\left(\left(-\mathrm{I} \sqrt{59}-3\right) 18^{\frac{1}{3}}+9 \,\mathrm{I} \,2^{\frac{1}{3}} 3^{\frac{1}{6}}+\sqrt{59}\, 2^{\frac{1}{3}} 3^{\frac{1}{6}}\right) \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}}}{96}\right)^{n} \left(\frac{\left(-3 \,\mathrm{I} \sqrt{59}-9\right) \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{576}+\frac{\left(\mathrm{I}+\frac{\sqrt{59}}{9}\right) 3^{\frac{5}{6}} \left(36+4 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{64}-\frac{\mathrm{I} \sqrt{3}}{12}-\frac{1}{12}\right)^{-n} \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{-\frac{2 n}{3}} 576^{n} \left(\frac{8 \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}-8 \,\mathrm{I} \left(36+4 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}} 3^{\frac{5}{6}}+\left(\left(-\mathrm{I} \sqrt{59}+3\right) 18^{\frac{1}{3}}+9 \,\mathrm{I} \,2^{\frac{1}{3}} 3^{\frac{1}{6}}-\sqrt{59}\, 2^{\frac{1}{3}} 3^{\frac{1}{6}}\right) \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}}}{-16 \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}+\left(2 \sqrt{59}\, 2^{\frac{1}{3}} 3^{\frac{1}{6}}-6 \,18^{\frac{1}{3}}\right) \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}}}\right)^{n}}{15}+\left(-\frac{11328 \left(n -\frac{1}{2}\right) 576^{n} \left(\frac{\left(-3 \,\mathrm{I} \sqrt{59}-9\right) \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{576}+\frac{\left(\mathrm{I}+\frac{\sqrt{59}}{9}\right) 3^{\frac{5}{6}} \left(36+4 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{64}-\frac{\mathrm{I} \sqrt{3}}{12}-\frac{1}{12}\right)^{-n} \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{-\frac{2 n}{3}} \left(-\frac{\left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}+\frac{\mathrm{I} \left(36+4 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}} 3^{\frac{5}{6}}}{12}+\frac{\left(\left(\mathrm{I} \sqrt{59}-3\right) 18^{\frac{1}{3}}-9 \,\mathrm{I} \,2^{\frac{1}{3}} 3^{\frac{1}{6}}+\sqrt{59}\, 2^{\frac{1}{3}} 3^{\frac{1}{6}}\right) \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}}}{96}\right)^{n}}{5}+\frac{1534 \left(\frac{\left(-3 \,\mathrm{I} \sqrt{59}-9\right) \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{48}+\frac{3 \left(\mathrm{I}+\frac{\sqrt{59}}{9}\right) 3^{\frac{5}{6}} \left(36+4 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{16}-\mathrm{I} \sqrt{3}-1\right)^{-n} \left(\frac{158 \,3^{2 n +\frac{1}{2}} 64^{n} \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{-\frac{2 n}{3}+\frac{1}{3}} \sqrt{59}}{767}+\left(108+12 \sqrt{59}\, \sqrt{3}\right)^{-\frac{2 n}{3}} \left(3^{2 n +\frac{2}{3}} 2^{6 n +\frac{1}{3}} \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}}-\frac{18 \,3^{2 n +\frac{1}{3}} 2^{6 n +\frac{2}{3}} \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{13}\right)\right) \left(8 \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}+\left(-\sqrt{59}\, 2^{\frac{1}{3}} 3^{\frac{1}{6}}+3 \,18^{\frac{1}{3}}\right) \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}}\right)^{-n} \left(-48 \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}+48 \,\mathrm{I} \left(36+4 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}} 3^{\frac{5}{6}}+\left(\left(6 \,\mathrm{I} \sqrt{59}-18\right) 18^{\frac{1}{3}}-54 \,\mathrm{I} \,2^{\frac{1}{3}} 3^{\frac{1}{6}}+6 \sqrt{59}\, 2^{\frac{1}{3}} 3^{\frac{1}{6}}\right) \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}}\right)^{n}}{45}+\left(-\frac{118 \left(\frac{79 \sqrt{59}}{531}+\mathrm{I}\right) 3^{2 n +\frac{1}{2}} 64^{n} \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{-\frac{2 n}{3}+\frac{1}{3}}}{5}-\frac{767 \left(-\frac{15 \sqrt{59}}{767}+\mathrm{I}\right) 3^{2 n +\frac{1}{2}} 64^{n} \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{-\frac{2 n}{3}+\frac{2}{3}}}{90}+\left(108+12 \sqrt{59}\, \sqrt{3}\right)^{-\frac{2 n}{3}} \left(3^{2 n +\frac{2}{3}} \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}} \left(-\frac{767}{45}+\mathrm{I} \sqrt{59}\right) 2^{6 n +\frac{1}{3}}+\frac{158 \left(\mathrm{I} \sqrt{59}+\frac{177}{79}\right) 3^{2 n +\frac{1}{3}} \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}} 2^{6 n +\frac{2}{3}}}{15}+\frac{1888 \,576^{n}}{15}\right)\right) \left(\frac{\left(-3 \,\mathrm{I} \sqrt{59}-9\right) \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{576}+\frac{\left(\mathrm{I}+\frac{\sqrt{59}}{9}\right) 3^{\frac{5}{6}} \left(36+4 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{64}-\frac{\mathrm{I} \sqrt{3}}{12}-\frac{1}{12}\right)^{-n}\right) \left(-\frac{\left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}-\frac{\mathrm{I} \left(36+4 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}} 3^{\frac{5}{6}}}{12}+\frac{\left(\left(-\mathrm{I} \sqrt{59}-3\right) 18^{\frac{1}{3}}+9 \,\mathrm{I} \,2^{\frac{1}{3}} 3^{\frac{1}{6}}+\sqrt{59}\, 2^{\frac{1}{3}} 3^{\frac{1}{6}}\right) \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}}}{96}\right)^{n}-\left(\frac{64^{n} \sqrt{59}\, 3^{2 n +\frac{1}{2}} \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{-\frac{2 n}{3}+\frac{2}{3}} \left(8 \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}+\left(-\sqrt{59}\, 2^{\frac{1}{3}} 3^{\frac{1}{6}}+3 \,18^{\frac{1}{3}}\right) \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}}\right)^{-n} \left(\frac{\left(-3 \,\mathrm{I} \sqrt{59}-9\right) \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{48}+\frac{3 \left(\mathrm{I}+\frac{\sqrt{59}}{9}\right) 3^{\frac{5}{6}} \left(36+4 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{16}-\mathrm{I} \sqrt{3}-1\right)^{-n} \left(-48 \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}-48 \,\mathrm{I} \left(36+4 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}} 3^{\frac{5}{6}}+\left(\left(-6 \,\mathrm{I} \sqrt{59}-18\right) 18^{\frac{1}{3}}+54 \,\mathrm{I} \,2^{\frac{1}{3}} 3^{\frac{1}{6}}+6 \sqrt{59}\, 2^{\frac{1}{3}} 3^{\frac{1}{6}}\right) \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}}\right)^{n}}{3}+\left(\frac{\left(-3 \,\mathrm{I} \sqrt{59}-9\right) \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{576}+\frac{\left(\mathrm{I}+\frac{\sqrt{59}}{9}\right) 3^{\frac{5}{6}} \left(36+4 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{64}-\frac{\mathrm{I} \sqrt{3}}{12}-\frac{1}{12}\right)^{-n} \left(-\frac{118 \left(\mathrm{I}-\frac{79 \sqrt{59}}{531}\right) 3^{2 n +\frac{1}{2}} 64^{n} \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{-\frac{2 n}{3}+\frac{1}{3}}}{5}-\frac{767 \left(\mathrm{I}+\frac{15 \sqrt{59}}{767}\right) 3^{2 n +\frac{1}{2}} 64^{n} \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{-\frac{2 n}{3}+\frac{2}{3}}}{90}+\left(3^{2 n +\frac{2}{3}} \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}} \left(\mathrm{I} \sqrt{59}+\frac{767}{45}\right) 2^{6 n +\frac{1}{3}}+\frac{158 \left(\mathrm{I} \sqrt{59}-\frac{177}{79}\right) 3^{2 n +\frac{1}{3}} \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}} 2^{6 n +\frac{2}{3}}}{15}-\frac{1888 \,576^{n}}{15}\right) \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{-\frac{2 n}{3}}\right)\right) \left(-\frac{\left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}+\frac{\mathrm{I} \left(36+4 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}} 3^{\frac{5}{6}}}{12}+\frac{\left(\left(\mathrm{I} \sqrt{59}-3\right) 18^{\frac{1}{3}}-9 \,\mathrm{I} \,2^{\frac{1}{3}} 3^{\frac{1}{6}}+\sqrt{59}\, 2^{\frac{1}{3}} 3^{\frac{1}{6}}\right) \left(9+\sqrt{59}\, \sqrt{3}\right)^{\frac{2}{3}}}{96}\right)^{n}\right) \left(\left(3 \,\mathrm{I} \sqrt{59}-9\right) \left(108+12 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}-9 \,3^{\frac{5}{6}} \left(\mathrm{I}-\frac{\sqrt{59}}{9}\right) \left(36+4 \sqrt{59}\, \sqrt{3}\right)^{\frac{1}{3}}+48 \,\mathrm{I} \sqrt{3}-48\right)^{-n}}{3776} & 0<n \end{array}\right.\)
This specification was found using the strategy pack "Point Placements" and has 50 rules.
Found on January 18, 2022.Finding the specification took 0 seconds.
Copy 50 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{4}\! \left(x \right) &= x\\
F_{5}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{13}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{14}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{16}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{14}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{20}\! \left(x \right)+F_{32}\! \left(x \right)\\
F_{19}\! \left(x \right) &= 0\\
F_{20}\! \left(x \right) &= F_{21}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{24}\! \left(x \right)+F_{26}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{25}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{16}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{27}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{28}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{29}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{31}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{29}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{33}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)+F_{42}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{35}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{36}\! \left(x \right)+F_{41}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{37}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{38}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{39}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{24}\! \left(x \right)+F_{40}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{13}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{34}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{35}\! \left(x \right)+F_{43}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{44}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{4}\! \left(x \right) F_{45}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{46}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{47}\! \left(x \right)\\
F_{47}\! \left(x \right) &= F_{48}\! \left(x \right)\\
F_{48}\! \left(x \right) &= F_{4}\! \left(x \right) F_{49}\! \left(x \right)\\
F_{49}\! \left(x \right) &= F_{31}\! \left(x \right)\\
\end{align*}\)