Av(1243, 1342, 1432, 3142, 4132)
Generating Function
\(\displaystyle \frac{\left(2-3 x \right) \sqrt{-4 x +1}-2 x^{2}+5 x -2}{2 \left(x -1\right) x}\)
Counting Sequence
1, 1, 2, 6, 19, 61, 199, 661, 2234, 7668, 26674, 93858, 333524, 1195288, 4315468, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x -1\right)^{2} x F \left(x
\right)^{2}+\left(x -1\right) \left(x -2\right) \left(2 x -1\right) F \! \left(x \right)+x^{3}+4 x^{2}-6 x +2 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(n +3\right) = \frac{3 \left(2 n +1\right) a \! \left(n \right)}{n +4}-\frac{\left(23 n +32\right) a \! \left(1+n \right)}{2 \left(n +4\right)}+\frac{\left(34+13 n \right) a \! \left(n +2\right)}{2 n +8}, \quad n \geq 4\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(n +3\right) = \frac{3 \left(2 n +1\right) a \! \left(n \right)}{n +4}-\frac{\left(23 n +32\right) a \! \left(1+n \right)}{2 \left(n +4\right)}+\frac{\left(34+13 n \right) a \! \left(n +2\right)}{2 n +8}, \quad n \geq 4\)
This specification was found using the strategy pack "Point Placements" and has 20 rules.
Found on July 23, 2021.Finding the specification took 6 seconds.
Copy 20 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{4}\! \left(x \right) &= x\\
F_{5}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{4}\! \left(x \right) F_{6}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{13}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right) F_{4}\! \left(x \right) F_{6}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{17}\! \left(x \right) F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{18}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{17}\! \left(x \right) F_{4}\! \left(x \right)\\
\end{align*}\)