Av(1243, 1342, 1432, 2341, 3214)
View Raw Data
Generating Function
\(\displaystyle \frac{x^{7}-3 x^{6}+3 x^{5}+3 x^{4}+3 x^{2}-3 x +1}{\left(x^{2}+1\right) \left(x^{3}-x^{2}-2 x +1\right) \left(x -1\right)^{2}}\)
Counting Sequence
1, 1, 2, 6, 19, 52, 127, 298, 687, 1565, 3539, 7977, 17954, 40376, 90759, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x^{2}+1\right) \left(x^{3}-x^{2}-2 x +1\right) \left(x -1\right)^{2} F \! \left(x \right)-x^{7}+3 x^{6}-3 x^{5}-3 x^{4}-3 x^{2}+3 x -1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 52\)
\(\displaystyle a \! \left(6\right) = 127\)
\(\displaystyle a \! \left(7\right) = 298\)
\(\displaystyle a \! \left(n +2\right) = a \! \left(n \right)-a \! \left(n +1\right)-2 a \! \left(n +4\right)+a \! \left(n +5\right)-5 n -11, \quad n \geq 8\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}1 & n =0 \\ \frac{\left(\left(-54 \,\mathrm{I} \sqrt{3}-32\right) \left(-28+84 \,\mathrm{I} \sqrt{3}\right)^{\frac{2}{3}}+42 \,\mathrm{I} \left(-28+84 \,\mathrm{I} \sqrt{3}\right)^{\frac{1}{3}} \sqrt{3}+518 \left(-28+84 \,\mathrm{I} \sqrt{3}\right)^{\frac{1}{3}}-1372\right) \left(\frac{\left(\mathrm{I} \sqrt{3}+5\right) \left(-28+84 \,\mathrm{I} \sqrt{3}\right)^{\frac{2}{3}}}{168}-\frac{\mathrm{I} \sqrt{3}\, \left(-28+84 \,\mathrm{I} \sqrt{3}\right)^{\frac{1}{3}}}{12}-\frac{\left(-28+84 \,\mathrm{I} \sqrt{3}\right)^{\frac{1}{3}}}{12}+\frac{1}{3}\right)^{-n}}{2548}\\+\\\frac{\left(\left(11 \,\mathrm{I} \sqrt{3}+97\right) \left(-28+84 \,\mathrm{I} \sqrt{3}\right)^{\frac{2}{3}}-280 \,\mathrm{I} \sqrt{3}\, \left(-28+84 \,\mathrm{I} \sqrt{3}\right)^{\frac{1}{3}}-196 \left(-28+84 \,\mathrm{I} \sqrt{3}\right)^{\frac{1}{3}}-1372\right) \left(\frac{\left(\mathrm{I} \sqrt{3}-2\right) \left(-28+84 \,\mathrm{I} \sqrt{3}\right)^{\frac{2}{3}}}{84}+\frac{\mathrm{I} \sqrt{3}\, \left(-28+84 \,\mathrm{I} \sqrt{3}\right)^{\frac{1}{3}}}{12}-\frac{\left(-28+84 \,\mathrm{I} \sqrt{3}\right)^{\frac{1}{3}}}{12}+\frac{1}{3}\right)^{-n}}{2548}\\+\\\frac{\left(\left(43 \,\mathrm{I} \sqrt{3}-65\right) \left(-28+84 \,\mathrm{I} \sqrt{3}\right)^{\frac{2}{3}}+238 \,\mathrm{I} \sqrt{3}\, \left(-28+84 \,\mathrm{I} \sqrt{3}\right)^{\frac{1}{3}}-322 \left(-28+84 \,\mathrm{I} \sqrt{3}\right)^{\frac{1}{3}}-1372\right) \left(\frac{\left(-28+84 \,\mathrm{I} \sqrt{3}\right)^{\frac{1}{3}}}{6}+\frac{1}{3}-\frac{\left(-28+84 \,\mathrm{I} \sqrt{3}\right)^{\frac{2}{3}}}{168}-\frac{\mathrm{I} \sqrt{3}\, \left(-28+84 \,\mathrm{I} \sqrt{3}\right)^{\frac{2}{3}}}{56}\right)^{-n}}{2548}\\-\frac{5 n}{2}-\frac{5 \cos \left(\frac{n \pi}{2}\right)}{13}+\frac{11 \sin \left(\frac{n \pi}{2}\right)}{26}+2 & \text{otherwise} \end{array}\right.\)

This specification was found using the strategy pack "Point Placements" and has 70 rules.

Found on January 18, 2022.

Finding the specification took 1 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 70 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{4}\! \left(x \right) &= x\\ F_{5}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{13}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{14}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{16}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{14}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{20}\! \left(x \right)+F_{60}\! \left(x \right)\\ F_{19}\! \left(x \right) &= 0\\ F_{20}\! \left(x \right) &= F_{21}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{32}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{24}\! \left(x \right)+F_{26}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{25}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{16}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{27}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{28}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{29}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{31}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{29}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)+F_{40}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{35}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{36}\! \left(x \right)+F_{37}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{2}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{38}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{39}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{36}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{41}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{4}\! \left(x \right) F_{42}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{43}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{44}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{45}\! \left(x \right)+F_{53}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{4}\! \left(x \right) F_{46}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{47}\! \left(x \right)+F_{50}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{48}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{24}\! \left(x \right)+F_{49}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{13}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{38}\! \left(x \right)+F_{51}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{52}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{4}\! \left(x \right) F_{43}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{4}\! \left(x \right) F_{54}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{55}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{56}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{4}\! \left(x \right) F_{57}\! \left(x \right)\\ F_{57}\! \left(x \right) &= F_{58}\! \left(x \right)\\ F_{58}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{59}\! \left(x \right)\\ F_{59}\! \left(x \right) &= F_{24}\! \left(x \right)\\ F_{60}\! \left(x \right) &= F_{4}\! \left(x \right) F_{61}\! \left(x \right)\\ F_{61}\! \left(x \right) &= F_{54}\! \left(x \right)+F_{62}\! \left(x \right)\\ F_{62}\! \left(x \right) &= F_{44}\! \left(x \right)+F_{63}\! \left(x \right)\\ F_{63}\! \left(x \right) &= F_{64}\! \left(x \right)\\ F_{64}\! \left(x \right) &= F_{4}\! \left(x \right) F_{65}\! \left(x \right)\\ F_{65}\! \left(x \right) &= F_{66}\! \left(x \right)\\ F_{66}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{67}\! \left(x \right)\\ F_{67}\! \left(x \right) &= F_{68}\! \left(x \right)\\ F_{68}\! \left(x \right) &= F_{4}\! \left(x \right) F_{69}\! \left(x \right)\\ F_{69}\! \left(x \right) &= F_{31}\! \left(x \right)\\ \end{align*}\)