Av(1243, 1342, 1432, 2143, 3412)
Generating Function
\(\displaystyle -\frac{2 x^{5}+3 x^{3}-8 x^{2}+5 x -1}{\left(x -1\right) \left(2 x -1\right) \left(x^{2}-3 x +1\right)}\)
Counting Sequence
1, 1, 2, 6, 19, 56, 158, 435, 1180, 3170, 8459, 22464, 59446, 156899, 413300, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x -1\right) \left(2 x -1\right) \left(x^{2}-3 x +1\right) F \! \left(x \right)+2 x^{5}+3 x^{3}-8 x^{2}+5 x -1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 56\)
\(\displaystyle a \! \left(n +3\right) = 2 a \! \left(n \right)-7 a \! \left(n +1\right)+5 a \! \left(n +2\right)-1, \quad n \geq 6\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 56\)
\(\displaystyle a \! \left(n +3\right) = 2 a \! \left(n \right)-7 a \! \left(n +1\right)+5 a \! \left(n +2\right)-1, \quad n \geq 6\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}1 & n =0\text{ or } n =1 \\ \frac{\left(-13 \sqrt{5}+35\right) \left(\frac{3}{2}-\frac{\sqrt{5}}{2}\right)^{-n}}{10}+\frac{\left(13 \sqrt{5}+35\right) \left(\frac{3}{2}+\frac{\sqrt{5}}{2}\right)^{-n}}{10}-2^{-1+n}-1 & \text{otherwise} \end{array}\right.\)
This specification was found using the strategy pack "Pattern Point Placements Req Corrob Expand Verified" and has 26 rules.
Found on January 21, 2022.Finding the specification took 12 seconds.
Copy 26 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{12}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{12}\! \left(x \right) F_{2}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{10}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{12}\! \left(x \right) &= x\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{12} \left(x \right)^{2} F_{15}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{16}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{20}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{18}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{12}\! \left(x \right) F_{17}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{21}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{23}\! \left(x \right)+F_{25}\! \left(x \right)\\
F_{22}\! \left(x \right) &= 0\\
F_{23}\! \left(x \right) &= F_{12}\! \left(x \right) F_{24}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{21}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{12}\! \left(x \right) F_{20}\! \left(x \right)\\
\end{align*}\)
This specification was found using the strategy pack "Point Placements Req Corrob Expand Verified" and has 28 rules.
Found on January 21, 2022.Finding the specification took 11 seconds.
Copy 28 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{10}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right) F_{11}\! \left(x \right)\\
F_{10}\! \left(x \right) &= x\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{15}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{13}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{10}\! \left(x \right) F_{12}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{19}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{10}\! \left(x \right) F_{18}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{16}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{21}\! \left(x \right)+F_{23}\! \left(x \right)\\
F_{20}\! \left(x \right) &= 0\\
F_{21}\! \left(x \right) &= F_{10}\! \left(x \right) F_{22}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{19}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{10}\! \left(x \right) F_{15}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{27}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{26}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{18}\! \left(x \right) F_{2}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{10}\! \left(x \right) F_{16}\! \left(x \right) F_{18}\! \left(x \right)\\
\end{align*}\)
This specification was found using the strategy pack "Point And Row Placements Req Corrob Expand Verified" and has 38 rules.
Found on January 21, 2022.Finding the specification took 12 seconds.
Copy 38 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{12}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{28}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{12}\! \left(x \right) F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{21}\! \left(x \right)+F_{27}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{12}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{13}\! \left(x \right)\\
F_{10}\! \left(x \right) &= \frac{F_{11}\! \left(x \right)}{F_{12}\! \left(x \right)}\\
F_{11}\! \left(x \right) &= F_{2}\! \left(x \right)\\
F_{12}\! \left(x \right) &= x\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{17}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{12}\! \left(x \right) F_{16}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{14}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{12}\! \left(x \right) F_{18}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{12}\! \left(x \right) F_{20}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{18}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{12}\! \left(x \right) F_{23}\! \left(x \right)\\
F_{23}\! \left(x \right) &= \frac{F_{24}\! \left(x \right)}{F_{12}\! \left(x \right)}\\
F_{24}\! \left(x \right) &= -F_{16}\! \left(x \right)-F_{25}\! \left(x \right)+F_{9}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{12}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{12}\! \left(x \right) F_{6}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{12}\! \left(x \right) F_{29}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{28}\! \left(x \right)+F_{30}\! \left(x \right)+F_{32}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{31}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{20} \left(x \right)^{2} F_{12}\! \left(x \right)\\
F_{32}\! \left(x \right) &= -F_{1}\! \left(x \right)-F_{33}\! \left(x \right)-F_{35}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{12}\! \left(x \right) F_{20}\! \left(x \right) F_{6}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{36}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{12}\! \left(x \right) F_{20}\! \left(x \right) F_{37}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{12}\! \left(x \right)\\
\end{align*}\)
This specification was found using the strategy pack "Row Placements Expand Verified" and has 37 rules.
Found on January 21, 2022.Finding the specification took 8 seconds.
Copy 37 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{11}\! \left(x \right) F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{27}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{11}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{20}\! \left(x \right)+F_{26}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{11}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= \frac{F_{10}\! \left(x \right)}{F_{11}\! \left(x \right)}\\
F_{10}\! \left(x \right) &= -F_{1}\! \left(x \right)+F_{0}\! \left(x \right)\\
F_{11}\! \left(x \right) &= x\\
F_{12}\! \left(x \right) &= F_{11}\! \left(x \right) F_{13}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{17}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{15}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{11}\! \left(x \right) F_{14}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{11}\! \left(x \right) F_{19}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{17}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{11}\! \left(x \right) F_{22}\! \left(x \right)\\
F_{22}\! \left(x \right) &= \frac{F_{23}\! \left(x \right)}{F_{11}\! \left(x \right)}\\
F_{23}\! \left(x \right) &= -F_{14}\! \left(x \right)-F_{24}\! \left(x \right)+F_{8}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{11}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{11}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{11}\! \left(x \right) F_{28}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{27}\! \left(x \right)+F_{29}\! \left(x \right)+F_{31}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{19} \left(x \right)^{2} F_{11}\! \left(x \right)\\
F_{31}\! \left(x \right) &= -F_{1}\! \left(x \right)-F_{32}\! \left(x \right)-F_{34}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{11}\! \left(x \right) F_{19}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{35}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{11}\! \left(x \right) F_{19}\! \left(x \right) F_{36}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\
\end{align*}\)
This specification was found using the strategy pack "Insertion Point Placements Req Corrob Expand Verified" and has 38 rules.
Found on January 21, 2022.Finding the specification took 7 seconds.
Copy 38 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{10}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right) F_{11}\! \left(x \right)\\
F_{10}\! \left(x \right) &= x\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{15}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{13}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{10}\! \left(x \right) F_{12}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{19}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{10}\! \left(x \right) F_{18}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{16}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{21}\! \left(x \right)+F_{23}\! \left(x \right)\\
F_{20}\! \left(x \right) &= 0\\
F_{21}\! \left(x \right) &= F_{10}\! \left(x \right) F_{22}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{19}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{10}\! \left(x \right) F_{15}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{28}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{16}\! \left(x \right) F_{26}\! \left(x \right)\\
F_{26}\! \left(x \right) &= \frac{F_{27}\! \left(x \right)}{F_{10}\! \left(x \right)}\\
F_{27}\! \left(x \right) &= F_{2}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{29}\! \left(x \right)+F_{36}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{34}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{31}\! \left(x \right)+F_{33}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{10}\! \left(x \right) F_{32}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{30}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{10}\! \left(x \right) F_{16}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{35}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{10}\! \left(x \right) F_{13}\! \left(x \right) F_{16}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{37}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{10}\! \left(x \right) F_{15}\! \left(x \right) F_{16}\! \left(x \right)\\
\end{align*}\)