Av(1243, 1342, 1432, 2134, 4123)
View Raw Data
Generating Function
\(\displaystyle \frac{\left(x -1\right) \left(3 x^{5}+5 x^{4}+x^{3}-x^{2}-2 x +1\right)}{\left(x^{2}-3 x +1\right) \left(x^{3}+x^{2}+x -1\right)}\)
Counting Sequence
1, 1, 2, 6, 19, 53, 143, 384, 1022, 2706, 7141, 18799, 49407, 129700, 340204, ...
Implicit Equation for the Generating Function
\(\displaystyle -\left(x^{2}-3 x +1\right) \left(x^{3}+x^{2}+x -1\right) F \! \left(x \right)+\left(x -1\right) \left(3 x^{5}+5 x^{4}+x^{3}-x^{2}-2 x +1\right) = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 53\)
\(\displaystyle a \! \left(6\right) = 143\)
\(\displaystyle a \! \left(n +5\right) = a \! \left(n \right)-2 a \! \left(n +1\right)-a \! \left(n +2\right)-3 a \! \left(n +3\right)+4 a \! \left(n +4\right), \quad n \geq 7\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}1 & n =0 \\ 1 & n =1 \\ \frac{\left(\left(\left(195 \,\mathrm{I}-25 \sqrt{11}\right) \sqrt{3}-75 \,\mathrm{I} \sqrt{11}+195\right) \left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}}-480+\left(\left(-210 \,\mathrm{I}-40 \sqrt{11}\right) \sqrt{3}+120 \,\mathrm{I} \sqrt{11}+210\right) \left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{2}{3}}\right) \left(\frac{\left(\left(17 \,\mathrm{I}+3 \sqrt{11}\right) \sqrt{3}-9 \,\mathrm{I} \sqrt{11}-17\right) \left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{2}{3}}}{24}-\frac{\mathrm{I} \sqrt{3}\, \left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}}}{6}-\frac{\left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}}}{6}-\frac{1}{3}\right)^{-n}}{1320}\\+\\\frac{\left(\left(\left(210 \,\mathrm{I}-40 \sqrt{11}\right) \sqrt{3}-120 \,\mathrm{I} \sqrt{11}+210\right) \left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{2}{3}}-480+\left(\left(-195 \,\mathrm{I}-25 \sqrt{11}\right) \sqrt{3}+75 \,\mathrm{I} \sqrt{11}+195\right) \left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}}\right) \left(\frac{\left(\left(-17 \,\mathrm{I}+3 \sqrt{11}\right) \sqrt{3}+9 \,\mathrm{I} \sqrt{11}-17\right) \left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{2}{3}}}{24}+\frac{\mathrm{I} \sqrt{3}\, \left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}}}{6}-\frac{\left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}}}{6}-\frac{1}{3}\right)^{-n}}{1320}\\+\\\frac{\left(\left(80 \sqrt{11}\, \sqrt{3}-420\right) \left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{2}{3}}+50 \left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}} \sqrt{11}\, \sqrt{3}-390 \left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}}-480\right) \left(\frac{\left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}}}{3}-\frac{1}{3}+\frac{17 \left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{2}{3}}}{12}-\frac{\left(17+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{2}{3}} \sqrt{11}\, \sqrt{3}}{4}\right)^{-n}}{1320}\\+\frac{\left(2028 \sqrt{5}-3900\right) \left(\frac{3}{2}-\frac{\sqrt{5}}{2}\right)^{-n}}{1320}+\frac{\left(-2028 \sqrt{5}-3900\right) \left(\frac{3}{2}+\frac{\sqrt{5}}{2}\right)^{-n}}{1320} & \text{otherwise} \end{array}\right.\)

This specification was found using the strategy pack "Point Placements" and has 108 rules.

Found on January 18, 2022.

Finding the specification took 1 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 108 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{4}\! \left(x \right) &= x\\ F_{5}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{13}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{17}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{16}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{19}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)\\ F_{21}\! \left(x \right) &= x^{2}\\ F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{62}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{25}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{29}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{27}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{16}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{30}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{32}\! \left(x \right)+F_{60}\! \left(x \right)\\ F_{31}\! \left(x \right) &= 0\\ F_{32}\! \left(x \right) &= F_{33}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)+F_{38}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{35}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{36}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{37}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{4}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{39}\! \left(x \right)\\ F_{39}\! \left(x \right) &= 2 F_{31}\! \left(x \right)+F_{40}\! \left(x \right)+F_{44}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{4}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{42}\! \left(x \right)+F_{43}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{35}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{39}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{4}\! \left(x \right) F_{45}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{46}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{47}\! \left(x \right)+F_{59}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{4}\! \left(x \right) F_{48}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{49}\! \left(x \right)+F_{52}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{4}\! \left(x \right)+F_{50}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{51}\! \left(x \right)\\ F_{51}\! \left(x \right) &= x^{2}\\ F_{52}\! \left(x \right) &= F_{46}\! \left(x \right)+F_{53}\! \left(x \right)\\ F_{53}\! \left(x \right) &= 2 F_{31}\! \left(x \right)+F_{54}\! \left(x \right)+F_{58}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{4}\! \left(x \right) F_{55}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{56}\! \left(x \right)+F_{57}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{50}\! \left(x \right)\\ F_{57}\! \left(x \right) &= F_{53}\! \left(x \right)\\ F_{58}\! \left(x \right) &= F_{4}\! \left(x \right) F_{46}\! \left(x \right)\\ F_{59}\! \left(x \right) &= F_{23}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{60}\! \left(x \right) &= F_{4}\! \left(x \right) F_{61}\! \left(x \right)\\ F_{61}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{46}\! \left(x \right)\\ F_{62}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{63}\! \left(x \right)+F_{98}\! \left(x \right)\\ F_{63}\! \left(x \right) &= F_{4}\! \left(x \right) F_{64}\! \left(x \right)\\ F_{64}\! \left(x \right) &= F_{65}\! \left(x \right)+F_{70}\! \left(x \right)\\ F_{65}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{66}\! \left(x \right)\\ F_{66}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{67}\! \left(x \right)+F_{68}\! \left(x \right)\\ F_{67}\! \left(x \right) &= F_{19}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{68}\! \left(x \right) &= F_{4}\! \left(x \right) F_{69}\! \left(x \right)\\ F_{69}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{70}\! \left(x \right) &= F_{71}\! \left(x \right)+F_{72}\! \left(x \right)\\ F_{71}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{60}\! \left(x \right)+F_{63}\! \left(x \right)\\ F_{72}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{73}\! \left(x \right)+F_{78}\! \left(x \right)+F_{94}\! \left(x \right)\\ F_{73}\! \left(x \right) &= F_{4}\! \left(x \right) F_{74}\! \left(x \right)\\ F_{74}\! \left(x \right) &= F_{75}\! \left(x \right)+F_{76}\! \left(x \right)\\ F_{75}\! \left(x \right) &= F_{35}\! \left(x \right)\\ F_{76}\! \left(x \right) &= F_{77}\! \left(x \right)\\ F_{77}\! \left(x \right) &= 2 F_{31}\! \left(x \right)+F_{44}\! \left(x \right)+F_{73}\! \left(x \right)\\ F_{78}\! \left(x \right) &= F_{4}\! \left(x \right) F_{79}\! \left(x \right)\\ F_{79}\! \left(x \right) &= F_{80}\! \left(x \right)+F_{92}\! \left(x \right)\\ F_{80}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{59}\! \left(x \right)+F_{81}\! \left(x \right)\\ F_{81}\! \left(x \right) &= F_{4}\! \left(x \right) F_{82}\! \left(x \right)\\ F_{82}\! \left(x \right) &= F_{83}\! \left(x \right)+F_{85}\! \left(x \right)\\ F_{83}\! \left(x \right) &= F_{4}\! \left(x \right)+F_{84}\! \left(x \right)\\ F_{84}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{51}\! \left(x \right)+F_{67}\! \left(x \right)\\ F_{85}\! \left(x \right) &= F_{80}\! \left(x \right)+F_{86}\! \left(x \right)\\ F_{86}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{58}\! \left(x \right)+F_{78}\! \left(x \right)+F_{87}\! \left(x \right)\\ F_{87}\! \left(x \right) &= F_{4}\! \left(x \right) F_{88}\! \left(x \right)\\ F_{88}\! \left(x \right) &= F_{89}\! \left(x \right)+F_{90}\! \left(x \right)\\ F_{89}\! \left(x \right) &= F_{50}\! \left(x \right)\\ F_{90}\! \left(x \right) &= F_{91}\! \left(x \right)\\ F_{91}\! \left(x \right) &= 2 F_{31}\! \left(x \right)+F_{58}\! \left(x \right)+F_{87}\! \left(x \right)\\ F_{92}\! \left(x \right) &= F_{93}\! \left(x \right)\\ F_{93}\! \left(x \right) &= F_{4}\! \left(x \right) F_{80}\! \left(x \right)\\ F_{94}\! \left(x \right) &= F_{4}\! \left(x \right) F_{95}\! \left(x \right)\\ F_{95}\! \left(x \right) &= F_{46}\! \left(x \right)+F_{96}\! \left(x \right)\\ F_{96}\! \left(x \right) &= F_{97}\! \left(x \right)\\ F_{97}\! \left(x \right) &= F_{4}\! \left(x \right) F_{46}\! \left(x \right)\\ F_{98}\! \left(x \right) &= F_{4}\! \left(x \right) F_{99}\! \left(x \right)\\ F_{99}\! \left(x \right) &= F_{100}\! \left(x \right)+F_{103}\! \left(x \right)\\ F_{100}\! \left(x \right) &= F_{101}\! \left(x \right)+F_{23}\! \left(x \right)\\ F_{101}\! \left(x \right) &= F_{102}\! \left(x \right)+F_{31}\! \left(x \right)+F_{81}\! \left(x \right)\\ F_{102}\! \left(x \right) &= F_{100}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{103}\! \left(x \right) &= F_{104}\! \left(x \right)+F_{106}\! \left(x \right)\\ F_{104}\! \left(x \right) &= F_{105}\! \left(x \right)+F_{31}\! \left(x \right)+F_{47}\! \left(x \right)\\ F_{105}\! \left(x \right) &= F_{4}\! \left(x \right) F_{61}\! \left(x \right)\\ F_{106}\! \left(x \right) &= F_{107}\! \left(x \right)\\ F_{107}\! \left(x \right) &= F_{4}\! \left(x \right) F_{79}\! \left(x \right)\\ \end{align*}\)