Av(1243, 1342, 1432, 2134, 2143)
View Raw Data
Generating Function
\(\displaystyle \frac{x^{3}+x^{2}+2 x -1}{x^{3}+3 x -1}\)
Counting Sequence
1, 1, 2, 6, 19, 59, 183, 568, 1763, 5472, 16984, 52715, 163617, 507835, 1576220, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x^{3}+3 x -1\right) F \! \left(x \right)-x^{3}-x^{2}-2 x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(n \right) = -3 a \! \left(n +2\right)+a \! \left(n +3\right), \quad n \geq 4\)
Explicit Closed Form
\(\displaystyle \frac{\left(\underset{\alpha =\mathit{RootOf} \left(Z^{3}+3 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n +1}\right)}{5}-\frac{\left(\underset{\alpha =\mathit{RootOf} \left(Z^{3}+3 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n}\right)}{15}+\frac{\left(\underset{\alpha =\mathit{RootOf} \left(Z^{3}+3 Z -1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n -1}\right)}{15}+\left(\left\{\begin{array}{cc}1 & n =0 \\ 0 & \text{otherwise} \end{array}\right.\right)\)

This specification was found using the strategy pack "Point Placements" and has 48 rules.

Found on January 18, 2022.

Finding the specification took 0 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 48 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{4}\! \left(x \right) &= x\\ F_{5}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{13}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{14}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{16}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{15}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{21}\! \left(x \right)+F_{44}\! \left(x \right)\\ F_{20}\! \left(x \right) &= 0\\ F_{21}\! \left(x \right) &= F_{22}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{29}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{25}\! \left(x \right)+F_{28}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{26}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{27}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{17}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{11}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{32}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{21}\! \left(x \right)+F_{31}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{2}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{33}\! \left(x \right)+F_{34}\! \left(x \right)+F_{40}\! \left(x \right)\\ F_{33}\! \left(x \right) &= 0\\ F_{34}\! \left(x \right) &= F_{35}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{36}\! \left(x \right)+F_{39}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{37}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{38}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{36}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{37}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{4}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{21}\! \left(x \right)+F_{42}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{4}\! \left(x \right) F_{43}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{41}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{4}\! \left(x \right) F_{45}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{43}\! \left(x \right)+F_{46}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{41}\! \left(x \right)+F_{47}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{38}\! \left(x \right)\\ \end{align*}\)