Av(1243, 1342, 1423, 2413, 3412)
View Raw Data
Generating Function
\(\displaystyle -\frac{3 x^{3}-8 x^{2}+5 x -1}{\left(2 x -1\right) \left(-1+x \right) \left(x^{2}-3 x +1\right)}\)
Counting Sequence
1, 1, 2, 6, 19, 58, 170, 483, 1342, 3670, 9923, 26610, 70930, 188227, 497846, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(2 x -1\right) \left(-1+x \right) \left(x^{2}-3 x +1\right) F \! \left(x \right)+3 x^{3}-8 x^{2}+5 x -1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(n +3\right) = 2 a \! \left(n \right)-7 a \! \left(n +1\right)+5 a \! \left(n +2\right)+1, \quad n \geq 4\)
Explicit Closed Form
\(\displaystyle \frac{\left(5+\sqrt{5}\right) \left(\frac{3}{2}-\frac{\sqrt{5}}{2}\right)^{-n}}{10}+\frac{\left(5-\sqrt{5}\right) \left(\frac{3}{2}+\frac{\sqrt{5}}{2}\right)^{-n}}{10}-2^{n}+1\)

This specification was found using the strategy pack "Point Placements" and has 20 rules.

Found on July 23, 2021.

Finding the specification took 2 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 20 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{12}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{12}\! \left(x \right) F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{10}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{12}\! \left(x \right) &= x\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{15}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{17}\! \left(x \right)+F_{18}\! \left(x \right)\\ F_{16}\! \left(x \right) &= 0\\ F_{17}\! \left(x \right) &= F_{12}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{12}\! \left(x \right) F_{19}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{15}\! \left(x \right)\\ \end{align*}\)