Av(1243, 1342, 1423, 2341, 2431)
View Raw Data
Generating Function
\(\displaystyle -\frac{3 x^{4}-7 x^{3}+9 x^{2}-5 x +1}{\left(2 x^{3}-4 x^{2}+4 x -1\right) \left(x -1\right)^{2}}\)
Counting Sequence
1, 1, 2, 6, 19, 58, 171, 494, 1413, 4024, 11439, 32494, 92277, 262020, 743971, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(2 x^{3}-4 x^{2}+4 x -1\right) \left(x -1\right)^{2} F \! \left(x \right)+3 x^{4}-7 x^{3}+9 x^{2}-5 x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(n +3\right) = 2 a \! \left(n \right)-4 a \! \left(n +1\right)+4 a \! \left(n +2\right)+n, \quad n \geq 5\)
Explicit Closed Form
\(\displaystyle \frac{\left(-132 \,2^{\frac{1}{3}} \left(\left(-\frac{7 \,\mathrm{I}}{11}+\frac{7 \sqrt{3}}{33}\right) \sqrt{11}+\mathrm{I} \sqrt{3}-1\right) \left(13+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}}-33 \left(13+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{2}{3}} \left(\left(\frac{\mathrm{I}}{11}+\frac{\sqrt{3}}{33}\right) \sqrt{11}+\mathrm{I} \sqrt{3}+1\right) 2^{\frac{2}{3}}\right) \left(\frac{13 \,2^{\frac{2}{3}} \left(\left(\mathrm{I}-\frac{3 \sqrt{11}}{13}\right) \sqrt{3}-\frac{9 \,\mathrm{I} \sqrt{11}}{13}+1\right) \left(13+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{2}{3}}}{384}-\frac{\mathrm{I} \sqrt{3}\, \left(26+6 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}+\frac{\left(26+6 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}+\frac{2}{3}\right)^{-n}}{4224}+\frac{\left(132 \,2^{\frac{1}{3}} \left(\left(-\frac{7 \,\mathrm{I}}{11}-\frac{7 \sqrt{3}}{33}\right) \sqrt{11}+\mathrm{I} \sqrt{3}+1\right) \left(13+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}}+33 \left(\left(\frac{\mathrm{I}}{11}-\frac{\sqrt{3}}{33}\right) \sqrt{11}+\mathrm{I} \sqrt{3}-1\right) \left(13+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{2}{3}} 2^{\frac{2}{3}}\right) \left(-\frac{13 \,2^{\frac{2}{3}} \left(\left(\mathrm{I}+\frac{3 \sqrt{11}}{13}\right) \sqrt{3}-\frac{9 \,\mathrm{I} \sqrt{11}}{13}-1\right) \left(13+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{2}{3}}}{384}+\frac{\mathrm{I} \sqrt{3}\, \left(26+6 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}+\frac{\left(26+6 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}+\frac{2}{3}\right)^{-n}}{4224}+\frac{\left(\left(56 \sqrt{11}\, \sqrt{3}\, 2^{\frac{1}{3}}-264 \,2^{\frac{1}{3}}\right) \left(13+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}}+2 \,2^{\frac{2}{3}} \left(13+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{2}{3}} \left(\sqrt{11}\, \sqrt{3}+33\right)\right) \left(\frac{2^{\frac{2}{3}} \left(3 \sqrt{11}\, \sqrt{3}-13\right) \left(13+3 \sqrt{11}\, \sqrt{3}\right)^{\frac{2}{3}}}{192}-\frac{\left(26+6 \sqrt{11}\, \sqrt{3}\right)^{\frac{1}{3}}}{6}+\frac{2}{3}\right)^{-n}}{4224}-n +1\)

This specification was found using the strategy pack "Point Placements" and has 96 rules.

Found on January 18, 2022.

Finding the specification took 1 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 96 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{12}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{12}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{10}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{12}\! \left(x \right) &= x\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{17}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{12}\! \left(x \right) F_{16}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{14}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{12}\! \left(x \right) F_{19}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{17}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{33}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{12}\! \left(x \right) F_{23}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{25}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{12}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{26}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{28}\! \left(x \right)+F_{32}\! \left(x \right)\\ F_{27}\! \left(x \right) &= 0\\ F_{28}\! \left(x \right) &= F_{12}\! \left(x \right) F_{29}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{31}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{12}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{26}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{12}\! \left(x \right) F_{21}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{34}\! \left(x \right)+F_{87}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{12}\! \left(x \right) F_{35}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{36}\! \left(x \right)+F_{50}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{37}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{38}\! \left(x \right)+F_{39}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{10}\! \left(x \right) F_{12}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{12}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{41}\! \left(x \right)+F_{43}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{42}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{38}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{44}\! \left(x \right)+F_{47}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{45}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{12}\! \left(x \right) F_{46}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{44}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{48}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{12}\! \left(x \right) F_{49}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{42}\! \left(x \right)+F_{47}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{33}\! \left(x \right)+F_{51}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{52}\! \left(x \right)+F_{56}\! \left(x \right)+F_{78}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{12}\! \left(x \right) F_{53}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{54}\! \left(x \right)+F_{55}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{37}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{51}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{12}\! \left(x \right) F_{57}\! \left(x \right)\\ F_{57}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{58}\! \left(x \right)+F_{76}\! \left(x \right)\\ F_{58}\! \left(x \right) &= F_{12}\! \left(x \right) F_{59}\! \left(x \right)\\ F_{59}\! \left(x \right) &= F_{60}\! \left(x \right)+F_{63}\! \left(x \right)\\ F_{60}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{61}\! \left(x \right)\\ F_{61}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{38}\! \left(x \right)+F_{62}\! \left(x \right)\\ F_{62}\! \left(x \right) &= F_{12}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{63}\! \left(x \right) &= F_{57}\! \left(x \right)+F_{64}\! \left(x \right)\\ F_{64}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{56}\! \left(x \right)+F_{65}\! \left(x \right)+F_{69}\! \left(x \right)\\ F_{65}\! \left(x \right) &= F_{12}\! \left(x \right) F_{66}\! \left(x \right)\\ F_{66}\! \left(x \right) &= F_{67}\! \left(x \right)+F_{68}\! \left(x \right)\\ F_{67}\! \left(x \right) &= F_{61}\! \left(x \right)\\ F_{68}\! \left(x \right) &= F_{64}\! \left(x \right)\\ F_{69}\! \left(x \right) &= F_{12}\! \left(x \right) F_{70}\! \left(x \right)\\ F_{70}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{71}\! \left(x \right)\\ F_{71}\! \left(x \right) &= 2 F_{27}\! \left(x \right)+F_{56}\! \left(x \right)+F_{72}\! \left(x \right)\\ F_{72}\! \left(x \right) &= F_{12}\! \left(x \right) F_{73}\! \left(x \right)\\ F_{73}\! \left(x \right) &= F_{74}\! \left(x \right)+F_{75}\! \left(x \right)\\ F_{74}\! \left(x \right) &= F_{42}\! \left(x \right)\\ F_{75}\! \left(x \right) &= F_{71}\! \left(x \right)\\ F_{76}\! \left(x \right) &= F_{12}\! \left(x \right) F_{77}\! \left(x \right)\\ F_{77}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{57}\! \left(x \right)\\ F_{78}\! \left(x \right) &= F_{12}\! \left(x \right) F_{79}\! \left(x \right)\\ F_{79}\! \left(x \right) &= F_{70}\! \left(x \right)+F_{80}\! \left(x \right)\\ F_{80}\! \left(x \right) &= F_{81}\! \left(x \right)+F_{84}\! \left(x \right)\\ F_{81}\! \left(x \right) &= F_{82}\! \left(x \right)\\ F_{82}\! \left(x \right) &= F_{12}\! \left(x \right) F_{83}\! \left(x \right)\\ F_{83}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{81}\! \left(x \right)\\ F_{84}\! \left(x \right) &= F_{85}\! \left(x \right)\\ F_{85}\! \left(x \right) &= F_{12}\! \left(x \right) F_{86}\! \left(x \right)\\ F_{86}\! \left(x \right) &= F_{71}\! \left(x \right)+F_{84}\! \left(x \right)\\ F_{87}\! \left(x \right) &= F_{12}\! \left(x \right) F_{88}\! \left(x \right)\\ F_{88}\! \left(x \right) &= F_{77}\! \left(x \right)+F_{89}\! \left(x \right)\\ F_{89}\! \left(x \right) &= F_{90}\! \left(x \right)+F_{93}\! \left(x \right)\\ F_{90}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{28}\! \left(x \right)+F_{91}\! \left(x \right)\\ F_{91}\! \left(x \right) &= F_{12}\! \left(x \right) F_{92}\! \left(x \right)\\ F_{92}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{90}\! \left(x \right)\\ F_{93}\! \left(x \right) &= 2 F_{27}\! \left(x \right)+F_{72}\! \left(x \right)+F_{94}\! \left(x \right)\\ F_{94}\! \left(x \right) &= F_{12}\! \left(x \right) F_{95}\! \left(x \right)\\ F_{95}\! \left(x \right) &= F_{57}\! \left(x \right)+F_{93}\! \left(x \right)\\ \end{align*}\)