Av(1243, 1342, 1423, 2314)
View Raw Data
Generating Function
\(\displaystyle -\frac{\left(3 \sqrt{1-4 x}\, x^{2}-3 \sqrt{1-4 x}\, x -x^{2}+\sqrt{1-4 x}+3 x -1\right) \left(2 x -1\right) \left(x -1\right)}{18 x^{5}-40 x^{4}+36 x^{3}-14 x^{2}+2 x}\)
Counting Sequence
1, 1, 2, 6, 20, 67, 224, 753, 2557, 8782, 30493, 106940, 378423, 1349927, 4850432, ...
Implicit Equation for the Generating Function
\(\displaystyle x \left(9 x^{4}-20 x^{3}+18 x^{2}-7 x +1\right) F \left(x \right)^{2}-\left(x -1\right) \left(2 x -1\right) \left(x^{2}-3 x +1\right) F \! \left(x \right)+\left(x -1\right)^{2} \left(2 x -1\right)^{2} = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 20\)
\(\displaystyle a \! \left(5\right) = 67\)
\(\displaystyle a \! \left(6\right) = 224\)
\(\displaystyle a \! \left(7\right) = 753\)
\(\displaystyle a \! \left(8\right) = 2557\)
\(\displaystyle a \! \left(n +9\right) = \frac{108 \left(2 n +1\right) a \! \left(n \right)}{n +10}-\frac{6 \left(179 n +283\right) a \! \left(1+n \right)}{n +10}+\frac{3 \left(797 n +2088\right) a \! \left(n +2\right)}{n +10}-\frac{2 \left(1559 n +5700\right) a \! \left(n +3\right)}{n +10}+\frac{2 \left(1307 n +6150\right) a \! \left(n +4\right)}{n +10}-\frac{4 \left(364 n +2099\right) a \! \left(n +5\right)}{n +10}+\frac{\left(3668+537 n \right) a \! \left(n +6\right)}{n +10}-\frac{14 \left(9 n +71\right) a \! \left(n +7\right)}{n +10}+\frac{\left(152+17 n \right) a \! \left(n +8\right)}{n +10}, \quad n \geq 9\)

This specification was found using the strategy pack "Point Placements Tracked Fusion" and has 57 rules.

Found on July 23, 2021.

Finding the specification took 12 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 57 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{16}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{43}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{16}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{10}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right) F_{16}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{17}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{14}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{13}\! \left(x \right) F_{16}\! \left(x \right)\\ F_{16}\! \left(x \right) &= x\\ F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{21}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{16}\! \left(x \right) F_{20}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{18}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{16}\! \left(x \right) F_{23}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{21}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{25}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{27}\! \left(x \right)+F_{29}\! \left(x \right)\\ F_{26}\! \left(x \right) &= 0\\ F_{27}\! \left(x \right) &= F_{16}\! \left(x \right) F_{28}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{25}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{16}\! \left(x \right) F_{30}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{36}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{32}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{33}\! \left(x \right)+F_{35}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{16}\! \left(x \right) F_{34}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{32}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{16}\! \left(x \right) F_{31}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{37}\! \left(x \right)+F_{40}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{38}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{16}\! \left(x \right) F_{39}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{37}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{41}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{16}\! \left(x \right) F_{42}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{40}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{44}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{16}\! \left(x \right) F_{45}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{4}\! \left(x \right)+F_{46}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{47}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{16}\! \left(x \right) F_{48}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{49}\! \left(x , 1\right)\\ F_{49}\! \left(x , y\right) &= \frac{y F_{50}\! \left(x , y\right)-F_{50}\! \left(x , 1\right)}{-1+y}\\ F_{50}\! \left(x , y\right) &= F_{51}\! \left(x , y\right)+F_{55}\! \left(x , y\right)\\ F_{51}\! \left(x , y\right) &= F_{0}\! \left(x \right)+F_{52}\! \left(x , y\right)\\ F_{52}\! \left(x , y\right) &= F_{53}\! \left(x , y\right)\\ F_{53}\! \left(x , y\right) &= F_{50}\! \left(x , y\right) F_{54}\! \left(x , y\right)\\ F_{54}\! \left(x , y\right) &= y x\\ F_{55}\! \left(x , y\right) &= F_{56}\! \left(x , y\right)\\ F_{56}\! \left(x , y\right) &= F_{16}\! \left(x \right) F_{49}\! \left(x , y\right)\\ \end{align*}\)