Av(1243, 1342, 1423, 2143, 3214)
View Raw Data
Generating Function
\(\displaystyle -\frac{\left(x^{2}+x -1\right) \left(x -1\right)^{3}}{x^{8}+x^{7}-2 x^{6}-4 x^{5}+2 x^{4}+5 x^{3}-8 x^{2}+5 x -1}\)
Counting Sequence
1, 1, 2, 6, 19, 56, 156, 430, 1194, 3337, 9341, 26128, 73028, 204071, 570303, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x^{8}+x^{7}-2 x^{6}-4 x^{5}+2 x^{4}+5 x^{3}-8 x^{2}+5 x -1\right) F \! \left(x \right)+\left(x^{2}+x -1\right) \left(x -1\right)^{3} = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 56\)
\(\displaystyle a \! \left(6\right) = 156\)
\(\displaystyle a \! \left(7\right) = 430\)
\(\displaystyle a \! \left(n +8\right) = a \! \left(n \right)+a \! \left(n +1\right)-2 a \! \left(n +2\right)-4 a \! \left(n +3\right)+2 a \! \left(n +4\right)+5 a \! \left(n +5\right)-8 a \! \left(n +6\right)+5 a \! \left(n +7\right), \quad n \geq 8\)
Explicit Closed Form
\(\displaystyle \frac{936266101 \mathit{RootOf} \left(Z^{8}+Z^{7}-2 Z^{6}-4 Z^{5}+2 Z^{4}+5 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =1\right)^{-n +6}}{9040218877}+\frac{936266101 \mathit{RootOf} \left(Z^{8}+Z^{7}-2 Z^{6}-4 Z^{5}+2 Z^{4}+5 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =2\right)^{-n +6}}{9040218877}+\frac{936266101 \mathit{RootOf} \left(Z^{8}+Z^{7}-2 Z^{6}-4 Z^{5}+2 Z^{4}+5 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =3\right)^{-n +6}}{9040218877}+\frac{936266101 \mathit{RootOf} \left(Z^{8}+Z^{7}-2 Z^{6}-4 Z^{5}+2 Z^{4}+5 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =4\right)^{-n +6}}{9040218877}+\frac{936266101 \mathit{RootOf} \left(Z^{8}+Z^{7}-2 Z^{6}-4 Z^{5}+2 Z^{4}+5 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =5\right)^{-n +6}}{9040218877}+\frac{936266101 \mathit{RootOf} \left(Z^{8}+Z^{7}-2 Z^{6}-4 Z^{5}+2 Z^{4}+5 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =6\right)^{-n +6}}{9040218877}+\frac{936266101 \mathit{RootOf} \left(Z^{8}+Z^{7}-2 Z^{6}-4 Z^{5}+2 Z^{4}+5 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =7\right)^{-n +6}}{9040218877}+\frac{936266101 \mathit{RootOf} \left(Z^{8}+Z^{7}-2 Z^{6}-4 Z^{5}+2 Z^{4}+5 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =8\right)^{-n +6}}{9040218877}+\frac{1540968814 \mathit{RootOf} \left(Z^{8}+Z^{7}-2 Z^{6}-4 Z^{5}+2 Z^{4}+5 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =1\right)^{-n +5}}{9040218877}+\frac{1540968814 \mathit{RootOf} \left(Z^{8}+Z^{7}-2 Z^{6}-4 Z^{5}+2 Z^{4}+5 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =2\right)^{-n +5}}{9040218877}+\frac{1540968814 \mathit{RootOf} \left(Z^{8}+Z^{7}-2 Z^{6}-4 Z^{5}+2 Z^{4}+5 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =3\right)^{-n +5}}{9040218877}+\frac{1540968814 \mathit{RootOf} \left(Z^{8}+Z^{7}-2 Z^{6}-4 Z^{5}+2 Z^{4}+5 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =4\right)^{-n +5}}{9040218877}+\frac{1540968814 \mathit{RootOf} \left(Z^{8}+Z^{7}-2 Z^{6}-4 Z^{5}+2 Z^{4}+5 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =5\right)^{-n +5}}{9040218877}+\frac{1540968814 \mathit{RootOf} \left(Z^{8}+Z^{7}-2 Z^{6}-4 Z^{5}+2 Z^{4}+5 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =6\right)^{-n +5}}{9040218877}+\frac{1540968814 \mathit{RootOf} \left(Z^{8}+Z^{7}-2 Z^{6}-4 Z^{5}+2 Z^{4}+5 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =7\right)^{-n +5}}{9040218877}+\frac{1540968814 \mathit{RootOf} \left(Z^{8}+Z^{7}-2 Z^{6}-4 Z^{5}+2 Z^{4}+5 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =8\right)^{-n +5}}{9040218877}-\frac{1005613107 \mathit{RootOf} \left(Z^{8}+Z^{7}-2 Z^{6}-4 Z^{5}+2 Z^{4}+5 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =1\right)^{-n +4}}{9040218877}-\frac{1005613107 \mathit{RootOf} \left(Z^{8}+Z^{7}-2 Z^{6}-4 Z^{5}+2 Z^{4}+5 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =2\right)^{-n +4}}{9040218877}-\frac{1005613107 \mathit{RootOf} \left(Z^{8}+Z^{7}-2 Z^{6}-4 Z^{5}+2 Z^{4}+5 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =3\right)^{-n +4}}{9040218877}-\frac{1005613107 \mathit{RootOf} \left(Z^{8}+Z^{7}-2 Z^{6}-4 Z^{5}+2 Z^{4}+5 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =4\right)^{-n +4}}{9040218877}-\frac{1005613107 \mathit{RootOf} \left(Z^{8}+Z^{7}-2 Z^{6}-4 Z^{5}+2 Z^{4}+5 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =5\right)^{-n +4}}{9040218877}-\frac{1005613107 \mathit{RootOf} \left(Z^{8}+Z^{7}-2 Z^{6}-4 Z^{5}+2 Z^{4}+5 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =6\right)^{-n +4}}{9040218877}-\frac{1005613107 \mathit{RootOf} \left(Z^{8}+Z^{7}-2 Z^{6}-4 Z^{5}+2 Z^{4}+5 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =7\right)^{-n +4}}{9040218877}-\frac{1005613107 \mathit{RootOf} \left(Z^{8}+Z^{7}-2 Z^{6}-4 Z^{5}+2 Z^{4}+5 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =8\right)^{-n +4}}{9040218877}-\frac{4527943201 \mathit{RootOf} \left(Z^{8}+Z^{7}-2 Z^{6}-4 Z^{5}+2 Z^{4}+5 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =1\right)^{-n +3}}{9040218877}-\frac{4527943201 \mathit{RootOf} \left(Z^{8}+Z^{7}-2 Z^{6}-4 Z^{5}+2 Z^{4}+5 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =2\right)^{-n +3}}{9040218877}-\frac{4527943201 \mathit{RootOf} \left(Z^{8}+Z^{7}-2 Z^{6}-4 Z^{5}+2 Z^{4}+5 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =3\right)^{-n +3}}{9040218877}-\frac{4527943201 \mathit{RootOf} \left(Z^{8}+Z^{7}-2 Z^{6}-4 Z^{5}+2 Z^{4}+5 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =4\right)^{-n +3}}{9040218877}-\frac{4527943201 \mathit{RootOf} \left(Z^{8}+Z^{7}-2 Z^{6}-4 Z^{5}+2 Z^{4}+5 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =5\right)^{-n +3}}{9040218877}-\frac{4527943201 \mathit{RootOf} \left(Z^{8}+Z^{7}-2 Z^{6}-4 Z^{5}+2 Z^{4}+5 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =6\right)^{-n +3}}{9040218877}-\frac{4527943201 \mathit{RootOf} \left(Z^{8}+Z^{7}-2 Z^{6}-4 Z^{5}+2 Z^{4}+5 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =7\right)^{-n +3}}{9040218877}-\frac{4527943201 \mathit{RootOf} \left(Z^{8}+Z^{7}-2 Z^{6}-4 Z^{5}+2 Z^{4}+5 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =8\right)^{-n +3}}{9040218877}-\frac{1207694171 \mathit{RootOf} \left(Z^{8}+Z^{7}-2 Z^{6}-4 Z^{5}+2 Z^{4}+5 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =1\right)^{-n +2}}{9040218877}-\frac{1207694171 \mathit{RootOf} \left(Z^{8}+Z^{7}-2 Z^{6}-4 Z^{5}+2 Z^{4}+5 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =2\right)^{-n +2}}{9040218877}-\frac{1207694171 \mathit{RootOf} \left(Z^{8}+Z^{7}-2 Z^{6}-4 Z^{5}+2 Z^{4}+5 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =3\right)^{-n +2}}{9040218877}-\frac{1207694171 \mathit{RootOf} \left(Z^{8}+Z^{7}-2 Z^{6}-4 Z^{5}+2 Z^{4}+5 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =4\right)^{-n +2}}{9040218877}-\frac{1207694171 \mathit{RootOf} \left(Z^{8}+Z^{7}-2 Z^{6}-4 Z^{5}+2 Z^{4}+5 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =5\right)^{-n +2}}{9040218877}-\frac{1207694171 \mathit{RootOf} \left(Z^{8}+Z^{7}-2 Z^{6}-4 Z^{5}+2 Z^{4}+5 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =6\right)^{-n +2}}{9040218877}-\frac{1207694171 \mathit{RootOf} \left(Z^{8}+Z^{7}-2 Z^{6}-4 Z^{5}+2 Z^{4}+5 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =7\right)^{-n +2}}{9040218877}-\frac{1207694171 \mathit{RootOf} \left(Z^{8}+Z^{7}-2 Z^{6}-4 Z^{5}+2 Z^{4}+5 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =8\right)^{-n +2}}{9040218877}+\frac{4249936049 \mathit{RootOf} \left(Z^{8}+Z^{7}-2 Z^{6}-4 Z^{5}+2 Z^{4}+5 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =1\right)^{-n +1}}{9040218877}+\frac{4249936049 \mathit{RootOf} \left(Z^{8}+Z^{7}-2 Z^{6}-4 Z^{5}+2 Z^{4}+5 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =2\right)^{-n +1}}{9040218877}+\frac{4249936049 \mathit{RootOf} \left(Z^{8}+Z^{7}-2 Z^{6}-4 Z^{5}+2 Z^{4}+5 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =3\right)^{-n +1}}{9040218877}+\frac{4249936049 \mathit{RootOf} \left(Z^{8}+Z^{7}-2 Z^{6}-4 Z^{5}+2 Z^{4}+5 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =4\right)^{-n +1}}{9040218877}+\frac{4249936049 \mathit{RootOf} \left(Z^{8}+Z^{7}-2 Z^{6}-4 Z^{5}+2 Z^{4}+5 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =5\right)^{-n +1}}{9040218877}+\frac{4249936049 \mathit{RootOf} \left(Z^{8}+Z^{7}-2 Z^{6}-4 Z^{5}+2 Z^{4}+5 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =6\right)^{-n +1}}{9040218877}+\frac{4249936049 \mathit{RootOf} \left(Z^{8}+Z^{7}-2 Z^{6}-4 Z^{5}+2 Z^{4}+5 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =7\right)^{-n +1}}{9040218877}+\frac{4249936049 \mathit{RootOf} \left(Z^{8}+Z^{7}-2 Z^{6}-4 Z^{5}+2 Z^{4}+5 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =8\right)^{-n +1}}{9040218877}+\frac{1925704842 \mathit{RootOf} \left(Z^{8}+Z^{7}-2 Z^{6}-4 Z^{5}+2 Z^{4}+5 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =1\right)^{-n -1}}{9040218877}+\frac{1925704842 \mathit{RootOf} \left(Z^{8}+Z^{7}-2 Z^{6}-4 Z^{5}+2 Z^{4}+5 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =2\right)^{-n -1}}{9040218877}+\frac{1925704842 \mathit{RootOf} \left(Z^{8}+Z^{7}-2 Z^{6}-4 Z^{5}+2 Z^{4}+5 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =3\right)^{-n -1}}{9040218877}+\frac{1925704842 \mathit{RootOf} \left(Z^{8}+Z^{7}-2 Z^{6}-4 Z^{5}+2 Z^{4}+5 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =4\right)^{-n -1}}{9040218877}+\frac{1925704842 \mathit{RootOf} \left(Z^{8}+Z^{7}-2 Z^{6}-4 Z^{5}+2 Z^{4}+5 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =5\right)^{-n -1}}{9040218877}+\frac{1925704842 \mathit{RootOf} \left(Z^{8}+Z^{7}-2 Z^{6}-4 Z^{5}+2 Z^{4}+5 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =6\right)^{-n -1}}{9040218877}+\frac{1925704842 \mathit{RootOf} \left(Z^{8}+Z^{7}-2 Z^{6}-4 Z^{5}+2 Z^{4}+5 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =7\right)^{-n -1}}{9040218877}+\frac{1925704842 \mathit{RootOf} \left(Z^{8}+Z^{7}-2 Z^{6}-4 Z^{5}+2 Z^{4}+5 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =8\right)^{-n -1}}{9040218877}-\frac{3630293888 \mathit{RootOf} \left(Z^{8}+Z^{7}-2 Z^{6}-4 Z^{5}+2 Z^{4}+5 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =1\right)^{-n}}{9040218877}-\frac{3630293888 \mathit{RootOf} \left(Z^{8}+Z^{7}-2 Z^{6}-4 Z^{5}+2 Z^{4}+5 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =2\right)^{-n}}{9040218877}-\frac{3630293888 \mathit{RootOf} \left(Z^{8}+Z^{7}-2 Z^{6}-4 Z^{5}+2 Z^{4}+5 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =3\right)^{-n}}{9040218877}-\frac{3630293888 \mathit{RootOf} \left(Z^{8}+Z^{7}-2 Z^{6}-4 Z^{5}+2 Z^{4}+5 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =4\right)^{-n}}{9040218877}-\frac{3630293888 \mathit{RootOf} \left(Z^{8}+Z^{7}-2 Z^{6}-4 Z^{5}+2 Z^{4}+5 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =5\right)^{-n}}{9040218877}-\frac{3630293888 \mathit{RootOf} \left(Z^{8}+Z^{7}-2 Z^{6}-4 Z^{5}+2 Z^{4}+5 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =6\right)^{-n}}{9040218877}-\frac{3630293888 \mathit{RootOf} \left(Z^{8}+Z^{7}-2 Z^{6}-4 Z^{5}+2 Z^{4}+5 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =7\right)^{-n}}{9040218877}-\frac{3630293888 \mathit{RootOf} \left(Z^{8}+Z^{7}-2 Z^{6}-4 Z^{5}+2 Z^{4}+5 Z^{3}-8 Z^{2}+5 Z -1, \mathit{index} =8\right)^{-n}}{9040218877}\)

This specification was found using the strategy pack "Point Placements" and has 98 rules.

Found on January 18, 2022.

Finding the specification took 1 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 98 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{4}\! \left(x \right) &= x\\ F_{5}\! \left(x \right) &= F_{20}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{13}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{17}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{16}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{14}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{19}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{11}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{21}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{23}\! \left(x \right)+F_{71}\! \left(x \right)\\ F_{22}\! \left(x \right) &= 0\\ F_{23}\! \left(x \right) &= F_{24}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{33}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{26}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{27}\! \left(x \right)+F_{32}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{28}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{29}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{30}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{31}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{29}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{13}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)+F_{37}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{35}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{36}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{34}\! \left(x \right)\\ F_{37}\! \left(x \right) &= 2 F_{22}\! \left(x \right)+F_{38}\! \left(x \right)+F_{43}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{39}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{34}\! \left(x \right)+F_{41}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{42}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{4}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{4}\! \left(x \right) F_{44}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{45}\! \left(x \right)+F_{68}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{46}\! \left(x \right)+F_{66}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{4}\! \left(x \right) F_{47}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{48}\! \left(x \right)+F_{56}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{4}\! \left(x \right)+F_{49}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{50}\! \left(x \right)+F_{55}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{4}\! \left(x \right) F_{51}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{52}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{4}\! \left(x \right)+F_{53}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{54}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{4}\! \left(x \right) F_{52}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{14}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{57}\! \left(x \right)+F_{59}\! \left(x \right)\\ F_{57}\! \left(x \right) &= F_{58}\! \left(x \right)\\ F_{58}\! \left(x \right) &= F_{2}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{59}\! \left(x \right) &= 2 F_{22}\! \left(x \right)+F_{60}\! \left(x \right)+F_{65}\! \left(x \right)\\ F_{60}\! \left(x \right) &= F_{4}\! \left(x \right) F_{61}\! \left(x \right)\\ F_{61}\! \left(x \right) &= F_{62}\! \left(x \right)\\ F_{62}\! \left(x \right) &= F_{57}\! \left(x \right)+F_{63}\! \left(x \right)\\ F_{63}\! \left(x \right) &= F_{64}\! \left(x \right)\\ F_{64}\! \left(x \right) &= F_{4}\! \left(x \right) F_{62}\! \left(x \right)\\ F_{65}\! \left(x \right) &= F_{4}\! \left(x \right) F_{45}\! \left(x \right)\\ F_{66}\! \left(x \right) &= F_{4}\! \left(x \right) F_{67}\! \left(x \right)\\ F_{67}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{45}\! \left(x \right)\\ F_{68}\! \left(x \right) &= F_{69}\! \left(x \right)\\ F_{69}\! \left(x \right) &= F_{4}\! \left(x \right) F_{70}\! \left(x \right)\\ F_{70}\! \left(x \right) &= F_{34}\! \left(x \right)\\ F_{71}\! \left(x \right) &= F_{4}\! \left(x \right) F_{72}\! \left(x \right)\\ F_{72}\! \left(x \right) &= F_{73}\! \left(x \right)+F_{76}\! \left(x \right)\\ F_{73}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{74}\! \left(x \right)\\ F_{74}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{23}\! \left(x \right)+F_{75}\! \left(x \right)\\ F_{75}\! \left(x \right) &= F_{4}\! \left(x \right) F_{73}\! \left(x \right)\\ F_{76}\! \left(x \right) &= F_{45}\! \left(x \right)+F_{77}\! \left(x \right)\\ F_{77}\! \left(x \right) &= 2 F_{22}\! \left(x \right)+F_{69}\! \left(x \right)+F_{78}\! \left(x \right)\\ F_{78}\! \left(x \right) &= F_{4}\! \left(x \right) F_{79}\! \left(x \right)\\ F_{79}\! \left(x \right) &= F_{80}\! \left(x \right)+F_{89}\! \left(x \right)\\ F_{80}\! \left(x \right) &= F_{81}\! \left(x \right)+F_{83}\! \left(x \right)\\ F_{81}\! \left(x \right) &= F_{82}\! \left(x \right)\\ F_{82}\! \left(x \right) &= F_{11}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{83}\! \left(x \right) &= F_{84}\! \left(x \right)\\ F_{84}\! \left(x \right) &= F_{4}\! \left(x \right) F_{85}\! \left(x \right)\\ F_{85}\! \left(x \right) &= F_{86}\! \left(x \right)\\ F_{86}\! \left(x \right) &= F_{81}\! \left(x \right)+F_{87}\! \left(x \right)\\ F_{87}\! \left(x \right) &= F_{88}\! \left(x \right)\\ F_{88}\! \left(x \right) &= F_{4}\! \left(x \right) F_{86}\! \left(x \right)\\ F_{89}\! \left(x \right) &= F_{90}\! \left(x \right)+F_{92}\! \left(x \right)\\ F_{90}\! \left(x \right) &= F_{91}\! \left(x \right)\\ F_{91}\! \left(x \right) &= F_{34}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{92}\! \left(x \right) &= F_{93}\! \left(x \right)\\ F_{93}\! \left(x \right) &= F_{4}\! \left(x \right) F_{94}\! \left(x \right)\\ F_{94}\! \left(x \right) &= F_{95}\! \left(x \right)\\ F_{95}\! \left(x \right) &= F_{90}\! \left(x \right)+F_{96}\! \left(x \right)\\ F_{96}\! \left(x \right) &= F_{97}\! \left(x \right)\\ F_{97}\! \left(x \right) &= F_{4}\! \left(x \right) F_{95}\! \left(x \right)\\ \end{align*}\)