Av(1243, 1342, 1423, 1432, 3214)
View Raw Data
Generating Function
\(\displaystyle -\frac{\left(x +1\right) \left(x -1\right)^{3}}{\left(2 x^{2}+2 x -1\right) \left(x^{4}-x^{3}-x^{2}+x -1\right)}\)
Counting Sequence
1, 1, 2, 6, 19, 54, 145, 390, 1062, 2909, 7962, 21757, 59420, 162306, 443427, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(2 x^{2}+2 x -1\right) \left(x^{4}-x^{3}-x^{2}+x -1\right) F \! \left(x \right)+\left(x +1\right) \left(x -1\right)^{3} = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 54\)
\(\displaystyle a \! \left(n \right) = \frac{5 a \! \left(n +2\right)}{2}-\frac{a \! \left(n +3\right)}{2}-\frac{a \! \left(n +4\right)}{2}+\frac{3 a \! \left(n +5\right)}{2}-\frac{a \! \left(n +6\right)}{2}, \quad n \geq 6\)
Explicit Closed Form
\(\displaystyle \frac{77044 \left(\underset{\alpha =\mathit{RootOf} \left(2 Z^{6}-5 Z^{4}+Z^{3}+Z^{2}-3 Z +1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n +4}\right)}{175099}-\frac{108996 \left(\underset{\alpha =\mathit{RootOf} \left(2 Z^{6}-5 Z^{4}+Z^{3}+Z^{2}-3 Z +1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n +3}\right)}{175099}-\frac{71956 \left(\underset{\alpha =\mathit{RootOf} \left(2 Z^{6}-5 Z^{4}+Z^{3}+Z^{2}-3 Z +1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n +2}\right)}{175099}+\frac{135929 \left(\underset{\alpha =\mathit{RootOf} \left(2 Z^{6}-5 Z^{4}+Z^{3}+Z^{2}-3 Z +1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n +1}\right)}{175099}-\frac{94644 \left(\underset{\alpha =\mathit{RootOf} \left(2 Z^{6}-5 Z^{4}+Z^{3}+Z^{2}-3 Z +1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n}\right)}{175099}+\frac{43429 \left(\underset{\alpha =\mathit{RootOf} \left(2 Z^{6}-5 Z^{4}+Z^{3}+Z^{2}-3 Z +1\right)}{\textcolor{gray}{\sum}}\! \alpha^{-n -1}\right)}{175099}\)

This specification was found using the strategy pack "Point Placements" and has 102 rules.

Found on January 18, 2022.

Finding the specification took 2 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 102 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{4}\! \left(x \right) &= x\\ F_{5}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{13}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{11}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{19}\! \left(x \right)+F_{71}\! \left(x \right)\\ F_{18}\! \left(x \right) &= 0\\ F_{19}\! \left(x \right) &= F_{20}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{30}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{23}\! \left(x \right)+F_{28}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{24}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{26}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{25}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{29}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{13}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{42}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{33}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)+F_{37}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{35}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{36}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{34}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{38}\! \left(x \right)+F_{40}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{39}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{2}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{41}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{35}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{42}\! \left(x \right) &= 2 F_{18}\! \left(x \right)+F_{43}\! \left(x \right)+F_{48}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{4}\! \left(x \right) F_{44}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{45}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{35}\! \left(x \right)+F_{46}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{47}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{4}\! \left(x \right) F_{45}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{4}\! \left(x \right) F_{49}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{50}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{51}\! \left(x \right)+F_{70}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{39}\! \left(x \right)+F_{52}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{4}\! \left(x \right) F_{53}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{54}\! \left(x \right)+F_{62}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{4}\! \left(x \right)+F_{55}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{56}\! \left(x \right)+F_{61}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{4}\! \left(x \right) F_{57}\! \left(x \right)\\ F_{57}\! \left(x \right) &= F_{58}\! \left(x \right)\\ F_{58}\! \left(x \right) &= F_{4}\! \left(x \right)+F_{59}\! \left(x \right)\\ F_{59}\! \left(x \right) &= F_{60}\! \left(x \right)\\ F_{60}\! \left(x \right) &= F_{4}\! \left(x \right) F_{58}\! \left(x \right)\\ F_{61}\! \left(x \right) &= x^{2}\\ F_{62}\! \left(x \right) &= F_{38}\! \left(x \right)+F_{63}\! \left(x \right)\\ F_{63}\! \left(x \right) &= 2 F_{18}\! \left(x \right)+F_{64}\! \left(x \right)+F_{69}\! \left(x \right)\\ F_{64}\! \left(x \right) &= F_{4}\! \left(x \right) F_{65}\! \left(x \right)\\ F_{65}\! \left(x \right) &= F_{66}\! \left(x \right)\\ F_{66}\! \left(x \right) &= F_{38}\! \left(x \right)+F_{67}\! \left(x \right)\\ F_{67}\! \left(x \right) &= F_{68}\! \left(x \right)\\ F_{68}\! \left(x \right) &= F_{4}\! \left(x \right) F_{66}\! \left(x \right)\\ F_{69}\! \left(x \right) &= F_{4}\! \left(x \right) F_{51}\! \left(x \right)\\ F_{70}\! \left(x \right) &= F_{41}\! \left(x \right)\\ F_{71}\! \left(x \right) &= F_{4}\! \left(x \right) F_{72}\! \left(x \right)\\ F_{72}\! \left(x \right) &= F_{73}\! \left(x \right)+F_{84}\! \left(x \right)\\ F_{73}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{74}\! \left(x \right)\\ F_{74}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{75}\! \left(x \right)+F_{83}\! \left(x \right)\\ F_{75}\! \left(x \right) &= F_{4}\! \left(x \right) F_{76}\! \left(x \right)\\ F_{76}\! \left(x \right) &= F_{77}\! \left(x \right)+F_{80}\! \left(x \right)\\ F_{77}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{78}\! \left(x \right)\\ F_{78}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{23}\! \left(x \right)+F_{79}\! \left(x \right)\\ F_{79}\! \left(x \right) &= F_{13}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{80}\! \left(x \right) &= F_{35}\! \left(x \right)+F_{81}\! \left(x \right)\\ F_{81}\! \left(x \right) &= 2 F_{18}\! \left(x \right)+F_{43}\! \left(x \right)+F_{82}\! \left(x \right)\\ F_{82}\! \left(x \right) &= F_{4}\! \left(x \right) F_{50}\! \left(x \right)\\ F_{83}\! \left(x \right) &= F_{4}\! \left(x \right) F_{73}\! \left(x \right)\\ F_{84}\! \left(x \right) &= F_{51}\! \left(x \right)+F_{85}\! \left(x \right)\\ F_{85}\! \left(x \right) &= 2 F_{18}\! \left(x \right)+F_{41}\! \left(x \right)+F_{86}\! \left(x \right)\\ F_{86}\! \left(x \right) &= F_{4}\! \left(x \right) F_{87}\! \left(x \right)\\ F_{87}\! \left(x \right) &= F_{88}\! \left(x \right)+F_{95}\! \left(x \right)\\ F_{88}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{89}\! \left(x \right)\\ F_{89}\! \left(x \right) &= F_{90}\! \left(x \right)\\ F_{90}\! \left(x \right) &= F_{4}\! \left(x \right) F_{91}\! \left(x \right)\\ F_{91}\! \left(x \right) &= F_{92}\! \left(x \right)\\ F_{92}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{93}\! \left(x \right)\\ F_{93}\! \left(x \right) &= F_{94}\! \left(x \right)\\ F_{94}\! \left(x \right) &= F_{4}\! \left(x \right) F_{92}\! \left(x \right)\\ F_{95}\! \left(x \right) &= F_{40}\! \left(x \right)+F_{96}\! \left(x \right)\\ F_{96}\! \left(x \right) &= F_{97}\! \left(x \right)\\ F_{97}\! \left(x \right) &= F_{4}\! \left(x \right) F_{98}\! \left(x \right)\\ F_{98}\! \left(x \right) &= F_{99}\! \left(x \right)\\ F_{99}\! \left(x \right) &= F_{100}\! \left(x \right)+F_{40}\! \left(x \right)\\ F_{100}\! \left(x \right) &= F_{101}\! \left(x \right)\\ F_{101}\! \left(x \right) &= F_{4}\! \left(x \right) F_{99}\! \left(x \right)\\ \end{align*}\)