Av(1243, 1342, 1423, 1432, 2143)
Generating Function
\(\displaystyle \frac{x^{2}+1-\sqrt{x^{4}-2 x^{2}-4 x +1}}{2 x \left(1+x \right)}\)
Counting Sequence
1, 1, 2, 6, 19, 64, 225, 816, 3031, 11473, 44096, 171631, 675130, 2679728, 10719237, ...
Implicit Equation for the Generating Function
\(\displaystyle x \left(1+x \right) F \left(x
\right)^{2}+\left(-x^{2}-1\right) F \! \left(x \right)+1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(n +5\right) = -\frac{n a \! \left(n \right)}{6+n}-\frac{n a \! \left(1+n \right)}{6+n}+\frac{2 \left(n +3\right) a \! \left(n +2\right)}{6+n}+\frac{6 \left(n +4\right) a \! \left(n +3\right)}{6+n}+\frac{3 \left(n +4\right) a \! \left(n +4\right)}{6+n}, \quad n \geq 5\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(n +5\right) = -\frac{n a \! \left(n \right)}{6+n}-\frac{n a \! \left(1+n \right)}{6+n}+\frac{2 \left(n +3\right) a \! \left(n +2\right)}{6+n}+\frac{6 \left(n +4\right) a \! \left(n +3\right)}{6+n}+\frac{3 \left(n +4\right) a \! \left(n +4\right)}{6+n}, \quad n \geq 5\)
This specification was found using the strategy pack "Point Placements" and has 9 rules.
Found on July 23, 2021.Finding the specification took 1 seconds.
Copy 9 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{0}\! \left(x \right) F_{4}\! \left(x \right) F_{7}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= x\\
\end{align*}\)