Av(1243, 1324, 3421)
Generating Function
\(\displaystyle \frac{2 x^{10}-7 x^{8}+65 x^{7}-187 x^{6}+274 x^{5}-248 x^{4}+145 x^{3}-53 x^{2}+11 x -1}{\left(2 x -1\right)^{3} \left(-1+x \right)^{6}}\)
Counting Sequence
1, 1, 2, 6, 21, 73, 233, 677, 1819, 4606, 11171, 26274, 60471, 137059, 307245, ...
Implicit Equation for the Generating Function
\(\displaystyle -\left(2 x -1\right)^{3} \left(-1+x \right)^{6} F \! \left(x \right)+2 x^{10}-7 x^{8}+65 x^{7}-187 x^{6}+274 x^{5}-248 x^{4}+145 x^{3}-53 x^{2}+11 x -1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 21\)
\(\displaystyle a \! \left(5\right) = 73\)
\(\displaystyle a \! \left(6\right) = 233\)
\(\displaystyle a \! \left(7\right) = 677\)
\(\displaystyle a \! \left(8\right) = 1819\)
\(\displaystyle a \! \left(9\right) = 4606\)
\(\displaystyle a \! \left(10\right) = 11171\)
\(\displaystyle a \! \left(n +3\right) = -\frac{n^{5}}{120}+\frac{3 n^{4}}{8}-\frac{31 n^{3}}{8}+\frac{101 n^{2}}{8}+8 a \! \left(n \right)-12 a \! \left(n +1\right)+6 a \! \left(n +2\right)-\frac{967 n}{60}+10, \quad n \geq 11\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 21\)
\(\displaystyle a \! \left(5\right) = 73\)
\(\displaystyle a \! \left(6\right) = 233\)
\(\displaystyle a \! \left(7\right) = 677\)
\(\displaystyle a \! \left(8\right) = 1819\)
\(\displaystyle a \! \left(9\right) = 4606\)
\(\displaystyle a \! \left(10\right) = 11171\)
\(\displaystyle a \! \left(n +3\right) = -\frac{n^{5}}{120}+\frac{3 n^{4}}{8}-\frac{31 n^{3}}{8}+\frac{101 n^{2}}{8}+8 a \! \left(n \right)-12 a \! \left(n +1\right)+6 a \! \left(n +2\right)-\frac{967 n}{60}+10, \quad n \geq 11\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}1 & n =0\text{ or } n =1 \\ \frac{\left(15 n^{2}+45 n +990\right) 2^{n}}{240}+\frac{n^{5}}{120}-\frac{n^{4}}{4}+\frac{5 n^{3}}{8}-\frac{13 n^{2}}{4}-\frac{2 n}{15}-5 & \text{otherwise} \end{array}\right.\)
This specification was found using the strategy pack "Point Placements" and has 144 rules.
Found on January 18, 2022.Finding the specification took 7 seconds.
This tree is too big to show here. Click to view tree on new page.
Copy 144 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{12}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{12}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{10}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{12}\! \left(x \right) &= x\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{23}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{12}\! \left(x \right) F_{16}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{9}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{21}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{12}\! \left(x \right) F_{20}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{18}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{12}\! \left(x \right) F_{17}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{12}\! \left(x \right) F_{13}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{48}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{12}\! \left(x \right) F_{28}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{29}\! \left(x \right)+F_{30}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{14}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{31}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{33}\! \left(x \right)+F_{35}\! \left(x \right)\\
F_{32}\! \left(x \right) &= 0\\
F_{33}\! \left(x \right) &= F_{12}\! \left(x \right) F_{34}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{31}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{12}\! \left(x \right) F_{36}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{37}\! \left(x \right)+F_{42}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{38}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{39}\! \left(x \right)+F_{41}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{12}\! \left(x \right) F_{40}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{38}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{12}\! \left(x \right) F_{37}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{43}\! \left(x \right)+F_{46}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{44}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{12}\! \left(x \right) F_{45}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{43}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{47}\! \left(x \right)\\
F_{47}\! \left(x \right) &= F_{12}\! \left(x \right) F_{42}\! \left(x \right)\\
F_{48}\! \left(x \right) &= F_{114}\! \left(x \right)+F_{32}\! \left(x \right)+F_{49}\! \left(x \right)\\
F_{49}\! \left(x \right) &= F_{12}\! \left(x \right) F_{50}\! \left(x \right)\\
F_{50}\! \left(x \right) &= F_{51}\! \left(x \right)+F_{72}\! \left(x \right)\\
F_{51}\! \left(x \right) &= F_{52}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{52}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{53}\! \left(x \right)+F_{61}\! \left(x \right)\\
F_{53}\! \left(x \right) &= F_{12}\! \left(x \right) F_{54}\! \left(x \right)\\
F_{54}\! \left(x \right) &= F_{55}\! \left(x \right)+F_{58}\! \left(x \right)\\
F_{55}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{56}\! \left(x \right)\\
F_{56}\! \left(x \right) &= F_{57}\! \left(x \right)\\
F_{57}\! \left(x \right) &= F_{12}\! \left(x \right) F_{55}\! \left(x \right)\\
F_{58}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{59}\! \left(x \right)\\
F_{59}\! \left(x \right) &= F_{60}\! \left(x \right)\\
F_{60}\! \left(x \right) &= F_{12}\! \left(x \right) F_{58}\! \left(x \right)\\
F_{61}\! \left(x \right) &= F_{12}\! \left(x \right) F_{62}\! \left(x \right)\\
F_{62}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{63}\! \left(x \right)\\
F_{63}\! \left(x \right) &= F_{64}\! \left(x \right)+F_{70}\! \left(x \right)\\
F_{64}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{53}\! \left(x \right)+F_{65}\! \left(x \right)\\
F_{65}\! \left(x \right) &= F_{12}\! \left(x \right) F_{66}\! \left(x \right)\\
F_{66}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{67}\! \left(x \right)\\
F_{67}\! \left(x \right) &= F_{43}\! \left(x \right)+F_{68}\! \left(x \right)\\
F_{68}\! \left(x \right) &= F_{69}\! \left(x \right)\\
F_{69}\! \left(x \right) &= F_{12}\! \left(x \right) F_{67}\! \left(x \right)\\
F_{70}\! \left(x \right) &= F_{71}\! \left(x \right)\\
F_{71}\! \left(x \right) &= F_{12}\! \left(x \right) F_{63}\! \left(x \right)\\
F_{72}\! \left(x \right) &= F_{73}\! \left(x \right)+F_{83}\! \left(x \right)\\
F_{73}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{74}\! \left(x \right)+F_{76}\! \left(x \right)\\
F_{74}\! \left(x \right) &= F_{12}\! \left(x \right) F_{75}\! \left(x \right)\\
F_{75}\! \left(x \right) &= F_{6}\! \left(x \right)+F_{73}\! \left(x \right)\\
F_{76}\! \left(x \right) &= F_{12}\! \left(x \right) F_{77}\! \left(x \right)\\
F_{77}\! \left(x \right) &= F_{37}\! \left(x \right)+F_{78}\! \left(x \right)\\
F_{78}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{79}\! \left(x \right)\\
F_{79}\! \left(x \right) &= 2 F_{32}\! \left(x \right)+F_{80}\! \left(x \right)+F_{82}\! \left(x \right)\\
F_{80}\! \left(x \right) &= F_{12}\! \left(x \right) F_{81}\! \left(x \right)\\
F_{81}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{79}\! \left(x \right)\\
F_{82}\! \left(x \right) &= F_{12}\! \left(x \right) F_{78}\! \left(x \right)\\
F_{83}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{84}\! \left(x \right)+F_{86}\! \left(x \right)+F_{96}\! \left(x \right)\\
F_{84}\! \left(x \right) &= F_{12}\! \left(x \right) F_{85}\! \left(x \right)\\
F_{85}\! \left(x \right) &= F_{52}\! \left(x \right)+F_{83}\! \left(x \right)\\
F_{86}\! \left(x \right) &= F_{12}\! \left(x \right) F_{87}\! \left(x \right)\\
F_{87}\! \left(x \right) &= F_{88}\! \left(x \right)+F_{93}\! \left(x \right)\\
F_{88}\! \left(x \right) &= F_{38}\! \left(x \right)+F_{89}\! \left(x \right)\\
F_{89}\! \left(x \right) &= 2 F_{32}\! \left(x \right)+F_{90}\! \left(x \right)+F_{92}\! \left(x \right)\\
F_{90}\! \left(x \right) &= F_{12}\! \left(x \right) F_{91}\! \left(x \right)\\
F_{91}\! \left(x \right) &= F_{56}\! \left(x \right)+F_{89}\! \left(x \right)\\
F_{92}\! \left(x \right) &= F_{12}\! \left(x \right) F_{88}\! \left(x \right)\\
F_{93}\! \left(x \right) &= F_{46}\! \left(x \right)+F_{94}\! \left(x \right)\\
F_{94}\! \left(x \right) &= F_{95}\! \left(x \right)\\
F_{95}\! \left(x \right) &= F_{12}\! \left(x \right) F_{93}\! \left(x \right)\\
F_{96}\! \left(x \right) &= F_{12}\! \left(x \right) F_{97}\! \left(x \right)\\
F_{97}\! \left(x \right) &= F_{78}\! \left(x \right)+F_{98}\! \left(x \right)\\
F_{98}\! \left(x \right) &= F_{110}\! \left(x \right)+F_{99}\! \left(x \right)\\
F_{99}\! \left(x \right) &= F_{100}\! \left(x \right)+F_{102}\! \left(x \right)+F_{32}\! \left(x \right)+F_{86}\! \left(x \right)\\
F_{100}\! \left(x \right) &= F_{101}\! \left(x \right) F_{12}\! \left(x \right)\\
F_{101}\! \left(x \right) &= F_{64}\! \left(x \right)+F_{99}\! \left(x \right)\\
F_{102}\! \left(x \right) &= F_{103}\! \left(x \right) F_{12}\! \left(x \right)\\
F_{103}\! \left(x \right) &= F_{104}\! \left(x \right)+F_{42}\! \left(x \right)\\
F_{104}\! \left(x \right) &= F_{105}\! \left(x \right)+F_{108}\! \left(x \right)\\
F_{105}\! \left(x \right) &= F_{106}\! \left(x \right)\\
F_{106}\! \left(x \right) &= F_{107}\! \left(x \right) F_{12}\! \left(x \right)\\
F_{107}\! \left(x \right) &= F_{105}\! \left(x \right)+F_{43}\! \left(x \right)\\
F_{108}\! \left(x \right) &= F_{109}\! \left(x \right)\\
F_{109}\! \left(x \right) &= F_{104}\! \left(x \right) F_{12}\! \left(x \right)\\
F_{110}\! \left(x \right) &= 3 F_{32}\! \left(x \right)+F_{111}\! \left(x \right)+F_{113}\! \left(x \right)\\
F_{111}\! \left(x \right) &= F_{112}\! \left(x \right) F_{12}\! \left(x \right)\\
F_{112}\! \left(x \right) &= F_{110}\! \left(x \right)+F_{70}\! \left(x \right)\\
F_{113}\! \left(x \right) &= F_{12}\! \left(x \right) F_{98}\! \left(x \right)\\
F_{114}\! \left(x \right) &= F_{115}\! \left(x \right) F_{12}\! \left(x \right)\\
F_{115}\! \left(x \right) &= F_{116}\! \left(x \right)+F_{127}\! \left(x \right)\\
F_{116}\! \left(x \right) &= F_{117}\! \left(x \right)+F_{26}\! \left(x \right)\\
F_{117}\! \left(x \right) &= F_{118}\! \left(x \right)+F_{126}\! \left(x \right)+F_{32}\! \left(x \right)\\
F_{118}\! \left(x \right) &= F_{119}\! \left(x \right) F_{12}\! \left(x \right)\\
F_{119}\! \left(x \right) &= F_{120}\! \left(x \right)+F_{122}\! \left(x \right)\\
F_{120}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{121}\! \left(x \right)\\
F_{121}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{32}\! \left(x \right)+F_{53}\! \left(x \right)\\
F_{122}\! \left(x \right) &= F_{123}\! \left(x \right)+F_{38}\! \left(x \right)\\
F_{123}\! \left(x \right) &= F_{124}\! \left(x \right)+F_{32}\! \left(x \right)+F_{82}\! \left(x \right)+F_{86}\! \left(x \right)\\
F_{124}\! \left(x \right) &= F_{12}\! \left(x \right) F_{125}\! \left(x \right)\\
F_{125}\! \left(x \right) &= F_{121}\! \left(x \right)+F_{123}\! \left(x \right)\\
F_{126}\! \left(x \right) &= F_{116}\! \left(x \right) F_{12}\! \left(x \right)\\
F_{127}\! \left(x \right) &= F_{128}\! \left(x \right)+F_{133}\! \left(x \right)\\
F_{128}\! \left(x \right) &= F_{129}\! \left(x \right)+F_{32}\! \left(x \right)+F_{35}\! \left(x \right)\\
F_{129}\! \left(x \right) &= F_{12}\! \left(x \right) F_{130}\! \left(x \right)\\
F_{130}\! \left(x \right) &= F_{131}\! \left(x \right)+F_{132}\! \left(x \right)\\
F_{131}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{64}\! \left(x \right)\\
F_{132}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{99}\! \left(x \right)\\
F_{133}\! \left(x \right) &= 2 F_{32}\! \left(x \right)+F_{134}\! \left(x \right)+F_{143}\! \left(x \right)\\
F_{134}\! \left(x \right) &= F_{12}\! \left(x \right) F_{135}\! \left(x \right)\\
F_{135}\! \left(x \right) &= F_{136}\! \left(x \right)+F_{138}\! \left(x \right)\\
F_{136}\! \left(x \right) &= F_{137}\! \left(x \right)+F_{23}\! \left(x \right)\\
F_{137}\! \left(x \right) &= F_{71}\! \left(x \right)\\
F_{138}\! \left(x \right) &= F_{139}\! \left(x \right)+F_{79}\! \left(x \right)\\
F_{139}\! \left(x \right) &= 2 F_{32}\! \left(x \right)+F_{113}\! \left(x \right)+F_{140}\! \left(x \right)+F_{142}\! \left(x \right)\\
F_{140}\! \left(x \right) &= F_{12}\! \left(x \right) F_{141}\! \left(x \right)\\
F_{141}\! \left(x \right) &= F_{137}\! \left(x \right)+F_{139}\! \left(x \right)\\
F_{142}\! \left(x \right) &= 0\\
F_{143}\! \left(x \right) &= F_{12}\! \left(x \right) F_{127}\! \left(x \right)\\
\end{align*}\)