Av(1243, 1324, 3412, 4231)
Generating Function
\(\displaystyle \frac{6 x^{7}-5 x^{6}-8 x^{5}+13 x^{4}-18 x^{3}+15 x^{2}-6 x +1}{\left(2 x -1\right) \left(x -1\right)^{5}}\)
Counting Sequence
1, 1, 2, 6, 20, 58, 140, 296, 574, 1056, 1890, 3354, 5984, 10830, 19968, ...
Implicit Equation for the Generating Function
\(\displaystyle -\left(2 x -1\right) \left(x -1\right)^{5} F \! \left(x \right)+6 x^{7}-5 x^{6}-8 x^{5}+13 x^{4}-18 x^{3}+15 x^{2}-6 x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 20\)
\(\displaystyle a \! \left(5\right) = 58\)
\(\displaystyle a \! \left(6\right) = 140\)
\(\displaystyle a \! \left(7\right) = 296\)
\(\displaystyle a \! \left(n +1\right) = -\frac{n^{4}}{12}-\frac{n^{3}}{6}+\frac{97 n^{2}}{12}+2 a \! \left(n \right)-\frac{155 n}{6}+24, \quad n \geq 8\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 20\)
\(\displaystyle a \! \left(5\right) = 58\)
\(\displaystyle a \! \left(6\right) = 140\)
\(\displaystyle a \! \left(7\right) = 296\)
\(\displaystyle a \! \left(n +1\right) = -\frac{n^{4}}{12}-\frac{n^{3}}{6}+\frac{97 n^{2}}{12}+2 a \! \left(n \right)-\frac{155 n}{6}+24, \quad n \geq 8\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}1 & n =0\text{ or } n =1 \\ 2^{n}+\frac{n^{3}}{2}-\frac{73 n^{2}}{12}+\frac{31 n}{2}-14+\frac{n^{4}}{12} & \text{otherwise} \end{array}\right.\)
This specification was found using the strategy pack "Point Placements" and has 45 rules.
Found on July 23, 2021.Finding the specification took 8 seconds.
Copy 45 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{18}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{18}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{5}\! \left(x \right)+F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right) F_{15}\! \left(x \right) F_{18}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{19}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{13}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{12}\! \left(x \right) F_{15}\! \left(x \right) F_{18}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{16}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{15}\! \left(x \right) F_{18}\! \left(x \right)\\
F_{18}\! \left(x \right) &= x\\
F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{15}\! \left(x \right) F_{18}\! \left(x \right) F_{21}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{19}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{18}\! \left(x \right) F_{24}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{39}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{27}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{15} \left(x \right)^{2}\\
F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{15}\! \left(x \right) F_{18}\! \left(x \right) F_{29}\! \left(x \right) F_{37}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{34}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{32}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{15} \left(x \right)^{3}\\
F_{32}\! \left(x \right) &= F_{16}\! \left(x \right) F_{33}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{16}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{35}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{15}\! \left(x \right) F_{18}\! \left(x \right) F_{36}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{13}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{38}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{18}\! \left(x \right) F_{37}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{15}\! \left(x \right) F_{18}\! \left(x \right) F_{37}\! \left(x \right) F_{41}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{42}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{43}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{18}\! \left(x \right) F_{44}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{42}\! \left(x \right)\\
\end{align*}\)