Av(1243, 1324, 2431, 3412, 4132)
View Raw Data
Generating Function
\(\displaystyle -\frac{2 x^{8}-6 x^{7}+7 x^{5}-8 x^{4}+15 x^{3}-14 x^{2}+6 x -1}{\left(x^{2}-3 x +1\right) \left(x -1\right)^{4}}\)
Counting Sequence
1, 1, 2, 6, 19, 52, 127, 300, 716, 1753, 4399, 11239, 29039, 75511, 197024, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x^{2}-3 x +1\right) \left(x -1\right)^{4} F \! \left(x \right)+2 x^{8}-6 x^{7}+7 x^{5}-8 x^{4}+15 x^{3}-14 x^{2}+6 x -1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 52\)
\(\displaystyle a \! \left(6\right) = 127\)
\(\displaystyle a \! \left(7\right) = 300\)
\(\displaystyle a \! \left(8\right) = 716\)
\(\displaystyle a \! \left(n +2\right) = -\frac{n^{3}}{6}-2 n^{2}-a \! \left(n \right)+3 a \! \left(n +1\right)+\frac{55 n}{6}-4, \quad n \geq 9\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}1 & n =0\text{ or } n =1 \\ 2 & n =2 \\ \frac{\left(-3 \sqrt{5}+15\right) \left(\frac{3}{2}-\frac{\sqrt{5}}{2}\right)^{-n}}{30}+\frac{\left(3 \sqrt{5}+15\right) \left(\frac{3}{2}+\frac{\sqrt{5}}{2}\right)^{-n}}{30}+\frac{n^{3}}{6}+\frac{3 n^{2}}{2}-\\\frac{35 n}{3}+18 & \text{otherwise} \end{array}\right.\)

This specification was found using the strategy pack "Point Placements" and has 64 rules.

Found on July 23, 2021.

Finding the specification took 8 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 64 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{8}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{8}\! \left(x \right) &= x\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{13}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{10}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{16}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{20}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{19}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{17}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{15}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{23}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{56}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{46}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{27}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{19}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{10}\! \left(x \right) F_{28}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{29}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{30}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{31}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{33}\! \left(x \right) F_{40}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{34}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{35}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{36}\! \left(x \right)+F_{37}\! \left(x \right)+F_{39}\! \left(x \right)\\ F_{36}\! \left(x \right) &= 0\\ F_{37}\! \left(x \right) &= F_{38}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{35}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{34}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{41}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{42}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{43}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{40}\! \left(x \right)+F_{44}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{45}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{19}\! \left(x \right) F_{43}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{47}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{48}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{49}\! \left(x \right)+F_{53}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{10}\! \left(x \right) F_{50}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{51}\! \left(x \right)+F_{52}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{33}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{19} \left(x \right)^{2} F_{8}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{19} \left(x \right)^{2} F_{54}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{55}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{11}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{57}\! \left(x \right)\\ F_{57}\! \left(x \right) &= F_{19}\! \left(x \right) F_{58}\! \left(x \right)\\ F_{58}\! \left(x \right) &= F_{59}\! \left(x \right)+F_{63}\! \left(x \right)\\ F_{59}\! \left(x \right) &= F_{10}\! \left(x \right) F_{60}\! \left(x \right)\\ F_{60}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{61}\! \left(x \right)\\ F_{61}\! \left(x \right) &= F_{17}\! \left(x \right) F_{62}\! \left(x \right)\\ F_{62}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{8}\! \left(x \right)\\ F_{63}\! \left(x \right) &= F_{17}\! \left(x \right) F_{54}\! \left(x \right)\\ \end{align*}\)