Av(1243, 1324, 2413, 3412, 4132)
View Raw Data
Generating Function
\(\displaystyle \frac{x^{8}-6 x^{7}+17 x^{6}-36 x^{5}+52 x^{4}-49 x^{3}+27 x^{2}-8 x +1}{\left(x^{2}-3 x +1\right) \left(x -1\right)^{6}}\)
Counting Sequence
1, 1, 2, 6, 19, 54, 140, 344, 827, 1989, 4847, 12023, 30329, 77533, 200071, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x^{2}-3 x +1\right) \left(x -1\right)^{6} F \! \left(x \right)-x^{8}+6 x^{7}-17 x^{6}+36 x^{5}-52 x^{4}+49 x^{3}-27 x^{2}+8 x -1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 54\)
\(\displaystyle a \! \left(6\right) = 140\)
\(\displaystyle a \! \left(7\right) = 344\)
\(\displaystyle a \! \left(8\right) = 827\)
\(\displaystyle a \! \left(n +2\right) = -\frac{n^{5}}{120}-\frac{n^{3}}{8}+\frac{n^{2}}{2}+3 a \! \left(n +1\right)-a \! \left(n \right)+\frac{49 n}{30}-1, \quad n \geq 9\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}1 & n =0 \\ \frac{\left(-12 \sqrt{5}+60\right) \left(\frac{3}{2}-\frac{\sqrt{5}}{2}\right)^{-n}}{120}+\frac{\left(12 \sqrt{5}+60\right) \left(\frac{3}{2}+\frac{\sqrt{5}}{2}\right)^{-n}}{120}+\frac{n^{5}}{120}-\frac{n^{4}}{24}+\\\frac{3 n^{3}}{8}-\frac{35 n^{2}}{24}+\frac{127 n}{60}-1 & \text{otherwise} \end{array}\right.\)

This specification was found using the strategy pack "Point Placements" and has 38 rules.

Found on July 23, 2021.

Finding the specification took 5 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 38 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{12}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{0}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{12}\! \left(x \right) F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{29}\! \left(x \right)+F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{23}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{13}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{10}\! \left(x \right) F_{12}\! \left(x \right)\\ F_{12}\! \left(x \right) &= x\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{17}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{12}\! \left(x \right) F_{16}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{15}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{19}\! \left(x \right)+F_{22}\! \left(x \right)\\ F_{18}\! \left(x \right) &= 0\\ F_{19}\! \left(x \right) &= F_{12}\! \left(x \right) F_{20}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{21}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{11}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{12}\! \left(x \right) F_{13}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{24}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{12}\! \left(x \right) F_{26}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{27}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{12}\! \left(x \right) F_{16}\! \left(x \right) F_{26}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{16}\! \left(x \right) F_{31}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{37}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)+F_{36}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{12}\! \left(x \right) F_{35}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{32}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{14}\! \left(x \right) F_{21}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{14}\! \left(x \right) F_{33}\! \left(x \right)\\ \end{align*}\)