Av(1243, 1324, 2341, 3214)
View Raw Data
Generating Function
2x73x62x42x3+8x25x+1(x23x+1)(x2+x1)(x1)2
Counting Sequence
1, 1, 2, 6, 20, 62, 178, 491, 1324, 3526, 9324, 24556, 64518, 169275, 443750, ...
Implicit Equation for the Generating Function
(x23x+1)(x2+x1)(x1)2F(x)+2x73x62x42x3+8x25x+1=0
Recurrence
a(0)=1
a(1)=1
a(2)=2
a(3)=6
a(4)=20
a(5)=62
a(6)=178
a(7)=491
a(n+4)=a(n)2a(n+1)3a(n+2)+4a(n+3)n+2,n8
Explicit Closed Form
{1n=0 or n=1(195+55)(3252)n20+(195+55)(32+52)n20+(3515)(5212)n20+(3515)(5212)n20n+2otherwise

This specification was found using the strategy pack "Point Placements" and has 58 rules.

Found on January 18, 2022.

Finding the specification took 1 seconds.

Copy to clipboard:

View tree on standalone page.

Created with Raphaël 2.1.4
57, 14
/
3
2
1
/
1
4
x
55, 56
/
2
1
/
3
2
1
18
2
1
+
54
/
2
1
53, 26
/
/
1
/
/
4
x
51, 52
/
1
/
/
1
11, 12
/
/
+
49, 50
/
2
1
/
1
4
x
47, 48
/
1
/
2
1
2, 3
1
2
1
+
46
/
1
+
45
/
2
1
4
x
44
/
2
1
43, 39
/
2
2
1
2
2
1
42, 18
/
2
1
2
1
+
41
/
3
2
1
4
x
39, 40
2
2
1
/
3
2
1
38, 34
/
2
1
2
1
37, 2
/
1
1
+
36
/
2
1
4
x
34, 35
2
1
/
2
1
+
33
3
2
1
32, 23
/
1
1
1
1
16, 7
/
1
1
+
31
/
2
1
4
x
30
/
2
1
29, 14
/
/
1
/
1
26
/
/
4
x
27, 28
/
/
/
/
11, 12
/
/
+
26
/
/
+
25
/
/
1
4
x
24
/
/
1
19
1
+
23
1
1
7, 8
1
/
1
+
22
2
1
+
21
3
2
1
4
x
20
3
2
1
19
1
+
18
2
1
2, 3
1
2
1
+
17
2
1
16, 7
/
1
1
4
x
14, 15
/
1
/
1
7, 8
1
/
1
+
13
/
1
10
/
4
x
11, 12
/
/
1
+
10
/
+
9
/
1
4
x
7, 8
1
/
1
1
+
6
1
+
5
2
1
4
x
2, 3
1
2
1
1
+
0
1

Copy 58 equations to clipboard:
F0(x)=F1(x)+F2(x)F1(x)=1F2(x)=F3(x)F3(x)=F4(x)F5(x)F4(x)=xF5(x)=F17(x)+F6(x)F6(x)=F1(x)+F7(x)F7(x)=F8(x)F8(x)=F4(x)F9(x)F9(x)=F10(x)+F13(x)F10(x)=F1(x)+F11(x)F11(x)=F12(x)F12(x)=F10(x)F4(x)F13(x)=F14(x)+F7(x)F14(x)=F15(x)F15(x)=F16(x)F4(x)F16(x)=F7(x)F17(x)=F18(x)+F2(x)F18(x)=F19(x)+F20(x)+F44(x)F19(x)=0F20(x)=F21(x)F4(x)F21(x)=F22(x)+F33(x)F22(x)=F23(x)+F7(x)F23(x)=F19(x)+F24(x)+F30(x)F24(x)=F25(x)F4(x)F25(x)=F26(x)+F29(x)F26(x)=F11(x)+F27(x)F27(x)=F28(x)F28(x)=F26(x)F4(x)F29(x)=F14(x)F30(x)=F31(x)F4(x)F31(x)=F16(x)+F32(x)F32(x)=F23(x)F33(x)=F34(x)+F39(x)F34(x)=F35(x)F35(x)=F36(x)F4(x)F36(x)=F37(x)+F38(x)F37(x)=F2(x)F38(x)=F34(x)F39(x)=F40(x)F40(x)=F4(x)F41(x)F41(x)=F42(x)+F43(x)F42(x)=F18(x)F43(x)=F39(x)F44(x)=F4(x)F45(x)F45(x)=F46(x)+F54(x)F46(x)=F2(x)+F47(x)F47(x)=F48(x)F48(x)=F4(x)F49(x)F49(x)=F50(x)F50(x)=F11(x)+F51(x)F51(x)=F52(x)F52(x)=F4(x)F53(x)F53(x)=F26(x)F54(x)=F18(x)+F55(x)F55(x)=F56(x)F56(x)=F4(x)F57(x)F57(x)=F14(x)