Av(1243, 1324, 2341, 3142, 3214)
Generating Function
\(\displaystyle \frac{2 x^{6}+2 x^{5}-5 x^{2}+4 x -1}{\left(x -1\right) \left(x^{2}+x -1\right) \left(x^{3}-2 x^{2}+3 x -1\right)}\)
Counting Sequence
1, 1, 2, 6, 19, 52, 131, 318, 759, 1795, 4221, 9889, 23111, 53922, 125668, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x -1\right) \left(x^{2}+x -1\right) \left(x^{3}-2 x^{2}+3 x -1\right) F \! \left(x \right)-2 x^{6}-2 x^{5}+5 x^{2}-4 x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 52\)
\(\displaystyle a \! \left(6\right) = 131\)
\(\displaystyle a \! \left(n +1\right) = a \! \left(n \right)+4 a \! \left(n +3\right)-4 a \! \left(n +4\right)+a \! \left(n +5\right)+2, \quad n \geq 7\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 52\)
\(\displaystyle a \! \left(6\right) = 131\)
\(\displaystyle a \! \left(n +1\right) = a \! \left(n \right)+4 a \! \left(n +3\right)-4 a \! \left(n +4\right)+a \! \left(n +5\right)+2, \quad n \geq 7\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}1 & n =0 \\ \frac{\left(483 \,2^{\frac{1}{3}} \left(\left(\mathrm{I}-\frac{409 \sqrt{23}}{483}\right) \sqrt{3}-\frac{409 \,\mathrm{I} \sqrt{23}}{161}+1\right) \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{2}{3}}+41400-7935 \,2^{\frac{2}{3}} \left(\left(\mathrm{I}+\frac{61 \sqrt{23}}{1587}\right) \sqrt{3}-\frac{61 \,\mathrm{I} \sqrt{23}}{529}-1\right) \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{1}{3}}\right) \left(\frac{11 \left(\left(\mathrm{I}-\frac{3 \sqrt{23}}{11}\right) \sqrt{3}-\frac{9 \,\mathrm{I} \sqrt{23}}{11}+1\right) 2^{\frac{1}{3}} \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{2}{3}}}{600}-\frac{\mathrm{I} \sqrt{3}\, \left(44+12 \sqrt{23}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}+\frac{\left(44+12 \sqrt{23}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}+\frac{2}{3}\right)^{-n}}{69000}\\+\\\frac{\left(7935 \,2^{\frac{2}{3}} \left(\left(\mathrm{I}-\frac{61 \sqrt{23}}{1587}\right) \sqrt{3}-\frac{61 \,\mathrm{I} \sqrt{23}}{529}+1\right) \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{1}{3}}+41400-483 \left(\left(\mathrm{I}+\frac{409 \sqrt{23}}{483}\right) \sqrt{3}-\frac{409 \,\mathrm{I} \sqrt{23}}{161}-1\right) 2^{\frac{1}{3}} \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{2}{3}}\right) \left(-\frac{11 \left(\left(\mathrm{I}+\frac{3 \sqrt{23}}{11}\right) \sqrt{3}-\frac{9 \,\mathrm{I} \sqrt{23}}{11}-1\right) 2^{\frac{1}{3}} \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{2}{3}}}{600}+\frac{\mathrm{I} \sqrt{3}\, \left(44+12 \sqrt{23}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}+\frac{\left(44+12 \sqrt{23}\, \sqrt{3}\right)^{\frac{1}{3}}}{12}+\frac{2}{3}\right)^{-n}}{69000}\\+\\\frac{\left(\left(610 \,2^{\frac{2}{3}} \sqrt{23}\, \sqrt{3}-15870 \,2^{\frac{2}{3}}\right) \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{1}{3}}+41400+\left(818 \sqrt{23}\, \sqrt{3}\, 2^{\frac{1}{3}}-966 \,2^{\frac{1}{3}}\right) \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{2}{3}}\right) \left(\frac{2^{\frac{1}{3}} \left(3 \sqrt{23}\, \sqrt{3}-11\right) \left(11+3 \sqrt{23}\, \sqrt{3}\right)^{\frac{2}{3}}}{300}-\frac{\left(44+12 \sqrt{23}\, \sqrt{3}\right)^{\frac{1}{3}}}{6}+\frac{2}{3}\right)^{-n}}{69000}\\+\frac{\left(13800 \sqrt{5}-27600\right) \left(-\frac{\sqrt{5}}{2}-\frac{1}{2}\right)^{-n}}{69000}-2+\\\frac{\left(-13800 \sqrt{5}-27600\right) \left(\frac{\sqrt{5}}{2}-\frac{1}{2}\right)^{-n}}{69000} & \text{otherwise} \end{array}\right.\)
This specification was found using the strategy pack "Point Placements" and has 43 rules.
Found on January 18, 2022.Finding the specification took 0 seconds.
Copy 43 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{4}\! \left(x \right) &= x\\
F_{5}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{13}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{16}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{7}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{20}\! \left(x \right)+F_{34}\! \left(x \right)\\
F_{19}\! \left(x \right) &= 0\\
F_{20}\! \left(x \right) &= F_{21}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{29}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{25}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{27}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{26}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{31}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{33}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{2}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{30}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{35}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{36}\! \left(x \right)+F_{42}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{37}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{38}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{39}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{41}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{24}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{18}\! \left(x \right)\\
\end{align*}\)