Av(1243, 1324, 2341, 2413, 2431)
Generating Function
\(\displaystyle -\frac{3 x^{6}-6 x^{5}-x^{4}+18 x^{3}-18 x^{2}+7 x -1}{\left(2 x -1\right) \left(x^{2}-3 x +1\right) \left(x^{2}+x -1\right) \left(x -1\right)^{2}}\)
Counting Sequence
1, 1, 2, 6, 19, 56, 154, 403, 1022, 2546, 6291, 15520, 38390, 95451, 238838, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(2 x -1\right) \left(x^{2}-3 x +1\right) \left(x^{2}+x -1\right) \left(x -1\right)^{2} F \! \left(x \right)+3 x^{6}-6 x^{5}-x^{4}+18 x^{3}-18 x^{2}+7 x -1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 56\)
\(\displaystyle a \! \left(6\right) = 154\)
\(\displaystyle a \! \left(n +5\right) = -2 a \! \left(n \right)+5 a \! \left(n +1\right)+4 a \! \left(n +2\right)-11 a \! \left(n +3\right)+6 a \! \left(n +4\right)-2 n -3, \quad n \geq 7\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 56\)
\(\displaystyle a \! \left(6\right) = 154\)
\(\displaystyle a \! \left(n +5\right) = -2 a \! \left(n \right)+5 a \! \left(n +1\right)+4 a \! \left(n +2\right)-11 a \! \left(n +3\right)+6 a \! \left(n +4\right)-2 n -3, \quad n \geq 7\)
Explicit Closed Form
\(\displaystyle \frac{\left(5-\sqrt{5}\right) \left(\frac{3}{2}-\frac{\sqrt{5}}{2}\right)^{-n}}{10}+\frac{\left(5+\sqrt{5}\right) \left(\frac{3}{2}+\frac{\sqrt{5}}{2}\right)^{-n}}{10}+\frac{\left(18 \sqrt{5}-40\right) \left(-\frac{\sqrt{5}}{2}-\frac{1}{2}\right)^{-n}}{10}+\frac{\left(-18 \sqrt{5}-40\right) \left(\frac{\sqrt{5}}{2}-\frac{1}{2}\right)^{-n}}{10}+2 n +3 \,2^{n}+5\)
This specification was found using the strategy pack "Point Placements" and has 72 rules.
Found on January 18, 2022.Finding the specification took 1 seconds.
Copy 72 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{12}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{12}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{10}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{12}\! \left(x \right) &= x\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{21}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{12}\! \left(x \right) F_{16}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{18}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{12}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{19}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{12}\! \left(x \right) F_{14}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{12}\! \left(x \right) F_{13}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{35}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{12}\! \left(x \right) F_{26}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{27}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{28}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{29}\! \left(x \right)+F_{30}\! \left(x \right)+F_{34}\! \left(x \right)\\
F_{29}\! \left(x \right) &= 0\\
F_{30}\! \left(x \right) &= F_{12}\! \left(x \right) F_{31}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{33}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{12}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{28}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{12}\! \left(x \right) F_{24}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{29}\! \left(x \right)+F_{36}\! \left(x \right)+F_{61}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{12}\! \left(x \right) F_{37}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{38}\! \left(x \right)+F_{41}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{39}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{10}\! \left(x \right) F_{12}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{35}\! \left(x \right)+F_{42}\! \left(x \right)\\
F_{42}\! \left(x \right) &= 2 F_{29}\! \left(x \right)+F_{43}\! \left(x \right)+F_{47}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{12}\! \left(x \right) F_{44}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{45}\! \left(x \right)+F_{46}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{39}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{42}\! \left(x \right)\\
F_{47}\! \left(x \right) &= F_{12}\! \left(x \right) F_{48}\! \left(x \right)\\
F_{48}\! \left(x \right) &= F_{29}\! \left(x \right)+F_{49}\! \left(x \right)+F_{59}\! \left(x \right)\\
F_{49}\! \left(x \right) &= F_{12}\! \left(x \right) F_{50}\! \left(x \right)\\
F_{50}\! \left(x \right) &= F_{51}\! \left(x \right)+F_{53}\! \left(x \right)\\
F_{51}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{52}\! \left(x \right)\\
F_{52}\! \left(x \right) &= F_{40}\! \left(x \right)\\
F_{53}\! \left(x \right) &= F_{48}\! \left(x \right)+F_{54}\! \left(x \right)\\
F_{54}\! \left(x \right) &= 2 F_{29}\! \left(x \right)+F_{47}\! \left(x \right)+F_{55}\! \left(x \right)\\
F_{55}\! \left(x \right) &= F_{12}\! \left(x \right) F_{56}\! \left(x \right)\\
F_{56}\! \left(x \right) &= F_{57}\! \left(x \right)+F_{58}\! \left(x \right)\\
F_{57}\! \left(x \right) &= F_{52}\! \left(x \right)\\
F_{58}\! \left(x \right) &= F_{54}\! \left(x \right)\\
F_{59}\! \left(x \right) &= F_{12}\! \left(x \right) F_{60}\! \left(x \right)\\
F_{60}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{48}\! \left(x \right)\\
F_{61}\! \left(x \right) &= F_{12}\! \left(x \right) F_{62}\! \left(x \right)\\
F_{62}\! \left(x \right) &= F_{60}\! \left(x \right)+F_{63}\! \left(x \right)\\
F_{63}\! \left(x \right) &= F_{64}\! \left(x \right)+F_{70}\! \left(x \right)\\
F_{64}\! \left(x \right) &= F_{29}\! \left(x \right)+F_{30}\! \left(x \right)+F_{65}\! \left(x \right)\\
F_{65}\! \left(x \right) &= F_{12}\! \left(x \right) F_{66}\! \left(x \right)\\
F_{66}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{67}\! \left(x \right)\\
F_{67}\! \left(x \right) &= F_{64}\! \left(x \right)+F_{68}\! \left(x \right)\\
F_{68}\! \left(x \right) &= F_{69}\! \left(x \right)\\
F_{69}\! \left(x \right) &= F_{12}\! \left(x \right) F_{64}\! \left(x \right)\\
F_{70}\! \left(x \right) &= F_{71}\! \left(x \right)\\
F_{71}\! \left(x \right) &= F_{12}\! \left(x \right) F_{63}\! \left(x \right)\\
\end{align*}\)