Av(1243, 1324, 2341)
Generating Function
\(\displaystyle \frac{\left(x^{2}-3 x +1\right) \left(x^{5}-2 x^{4}-3 x^{3}+6 x^{2}-4 x +1\right) \sqrt{1-4 x}-9 x^{7}+19 x^{6}+10 x^{5}-59 x^{4}+63 x^{3}-33 x^{2}+9 x -1}{2 x^{2} \left(x^{2}+x -1\right) \left(x^{2}-3 x +1\right) \left(x -1\right)^{2}}\)
Counting Sequence
1, 1, 2, 6, 21, 76, 275, 989, 3544, 12696, 45578, 164194, 593966, 2158090, 7875503, ...
Implicit Equation for the Generating Function
\(\displaystyle x^{2} \left(x^{2}-3 x +1\right)^{2} \left(x^{2}+x -1\right)^{2} \left(x -1\right)^{4} F \left(x
\right)^{2}+\left(x^{2}-3 x +1\right) \left(x^{2}+x -1\right) \left(9 x^{7}-19 x^{6}-10 x^{5}+59 x^{4}-63 x^{3}+33 x^{2}-9 x +1\right) \left(x -1\right)^{2} F \! \left(x \right)+x^{13}+10 x^{12}-50 x^{11}+23 x^{10}+200 x^{9}-386 x^{8}+119 x^{7}+464 x^{6}-774 x^{5}+614 x^{4}-292 x^{3}+85 x^{2}-14 x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 21\)
\(\displaystyle a \! \left(5\right) = 76\)
\(\displaystyle a \! \left(6\right) = 275\)
\(\displaystyle a \! \left(7\right) = 989\)
\(\displaystyle a \! \left(8\right) = 3544\)
\(\displaystyle a \! \left(9\right) = 12696\)
\(\displaystyle a \! \left(10\right) = 45578\)
\(\displaystyle a \! \left(11\right) = 164194\)
\(\displaystyle a \! \left(12\right) = 593966\)
\(\displaystyle a \! \left(13\right) = 2158090\)
\(\displaystyle a \! \left(n +13\right) = \frac{2 \left(1+2 n \right) a \! \left(n \right)}{15+n}+\frac{\left(217+80 n \right) a \! \left(2+n \right)}{15+n}-\frac{3 \left(18+11 n \right) a \! \left(n +1\right)}{15+n}+\frac{\left(155+34 n \right) a \! \left(n +3\right)}{15+n}-\frac{\left(2277+445 n \right) a \! \left(n +4\right)}{15+n}+\frac{2 \left(2071+324 n \right) a \! \left(n +5\right)}{15+n}-\frac{\left(794+27 n \right) a \! \left(n +6\right)}{15+n}-\frac{\left(7053+959 n \right) a \! \left(n +7\right)}{15+n}+\frac{\left(11816+1333 n \right) a \! \left(n +8\right)}{15+n}-\frac{\left(9713+955 n \right) a \! \left(n +9\right)}{15+n}+\frac{2 \left(2363+207 n \right) a \! \left(n +10\right)}{15+n}-\frac{\left(1376+109 n \right) a \! \left(n +11\right)}{15+n}+\frac{\left(221+16 n \right) a \! \left(n +12\right)}{15+n}+\frac{4}{15+n}, \quad n \geq 14\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 21\)
\(\displaystyle a \! \left(5\right) = 76\)
\(\displaystyle a \! \left(6\right) = 275\)
\(\displaystyle a \! \left(7\right) = 989\)
\(\displaystyle a \! \left(8\right) = 3544\)
\(\displaystyle a \! \left(9\right) = 12696\)
\(\displaystyle a \! \left(10\right) = 45578\)
\(\displaystyle a \! \left(11\right) = 164194\)
\(\displaystyle a \! \left(12\right) = 593966\)
\(\displaystyle a \! \left(13\right) = 2158090\)
\(\displaystyle a \! \left(n +13\right) = \frac{2 \left(1+2 n \right) a \! \left(n \right)}{15+n}+\frac{\left(217+80 n \right) a \! \left(2+n \right)}{15+n}-\frac{3 \left(18+11 n \right) a \! \left(n +1\right)}{15+n}+\frac{\left(155+34 n \right) a \! \left(n +3\right)}{15+n}-\frac{\left(2277+445 n \right) a \! \left(n +4\right)}{15+n}+\frac{2 \left(2071+324 n \right) a \! \left(n +5\right)}{15+n}-\frac{\left(794+27 n \right) a \! \left(n +6\right)}{15+n}-\frac{\left(7053+959 n \right) a \! \left(n +7\right)}{15+n}+\frac{\left(11816+1333 n \right) a \! \left(n +8\right)}{15+n}-\frac{\left(9713+955 n \right) a \! \left(n +9\right)}{15+n}+\frac{2 \left(2363+207 n \right) a \! \left(n +10\right)}{15+n}-\frac{\left(1376+109 n \right) a \! \left(n +11\right)}{15+n}+\frac{\left(221+16 n \right) a \! \left(n +12\right)}{15+n}+\frac{4}{15+n}, \quad n \geq 14\)
This specification was found using the strategy pack "Row Placements Tracked Fusion" and has 331 rules.
Found on July 23, 2021.Finding the specification took 5 seconds.
This tree is too big to show here. Click to view tree on new page.
Copy 331 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{14}\! \left(x \right) F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{148}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{14}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{44}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right) F_{14}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{15}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{12}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{13}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{11}\! \left(x \right) F_{14}\! \left(x \right)\\
F_{14}\! \left(x \right) &= x\\
F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{23}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{14}\! \left(x \right) F_{18}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{20}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{14}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{21}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{14}\! \left(x \right) F_{16}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{14}\! \left(x \right) F_{15}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{26}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{14}\! \left(x \right) F_{28}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{29}\! \left(x \right)+F_{32}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{30}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{31}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{14}\! \left(x \right) F_{29}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)+F_{42}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{14}\! \left(x \right) F_{35}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{36}\! \left(x \right)+F_{39}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{37}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{38}\! \left(x \right)\\
F_{38}\! \left(x \right) &= x^{2}\\
F_{39}\! \left(x \right) &= F_{33}\! \left(x \right)+F_{40}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{41}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{14}\! \left(x \right) F_{33}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{43}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{14}\! \left(x \right) F_{32}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{127}\! \left(x \right)+F_{45}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{46}\! \left(x \right)+F_{57}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{47}\! \left(x \right)\\
F_{47}\! \left(x \right) &= F_{14}\! \left(x \right) F_{48}\! \left(x \right)\\
F_{48}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{49}\! \left(x \right)\\
F_{49}\! \left(x \right) &= F_{46}\! \left(x \right)+F_{50}\! \left(x \right)\\
F_{50}\! \left(x \right) &= F_{51}\! \left(x \right)+F_{52}\! \left(x \right)+F_{56}\! \left(x \right)\\
F_{51}\! \left(x \right) &= 0\\
F_{52}\! \left(x \right) &= F_{14}\! \left(x \right) F_{53}\! \left(x \right)\\
F_{53}\! \left(x \right) &= F_{54}\! \left(x \right)+F_{55}\! \left(x \right)\\
F_{54}\! \left(x \right) &= F_{14}\! \left(x \right)\\
F_{55}\! \left(x \right) &= F_{50}\! \left(x \right)\\
F_{56}\! \left(x \right) &= F_{14}\! \left(x \right) F_{46}\! \left(x \right)\\
F_{57}\! \left(x \right) &= F_{51}\! \left(x \right)+F_{58}\! \left(x \right)+F_{90}\! \left(x \right)\\
F_{58}\! \left(x \right) &= F_{14}\! \left(x \right) F_{59}\! \left(x \right)\\
F_{59}\! \left(x \right) &= F_{60}\! \left(x \right)+F_{62}\! \left(x \right)\\
F_{60}\! \left(x \right) &= F_{61}\! \left(x \right)+F_{8}\! \left(x \right)\\
F_{61}\! \left(x \right) &= F_{27}\! \left(x \right)\\
F_{62}\! \left(x \right) &= F_{57}\! \left(x \right)+F_{63}\! \left(x \right)\\
F_{63}\! \left(x \right) &= 2 F_{51}\! \left(x \right)+F_{64}\! \left(x \right)+F_{68}\! \left(x \right)\\
F_{64}\! \left(x \right) &= F_{14}\! \left(x \right) F_{65}\! \left(x \right)\\
F_{65}\! \left(x \right) &= F_{66}\! \left(x \right)+F_{67}\! \left(x \right)\\
F_{66}\! \left(x \right) &= F_{61}\! \left(x \right)\\
F_{67}\! \left(x \right) &= F_{63}\! \left(x \right)\\
F_{68}\! \left(x \right) &= F_{14}\! \left(x \right) F_{69}\! \left(x \right)\\
F_{69}\! \left(x \right) &= F_{70}\! \left(x \right)+F_{78}\! \left(x \right)\\
F_{70}\! \left(x \right) &= F_{71}\! \left(x \right)+F_{76}\! \left(x \right)\\
F_{71}\! \left(x \right) &= F_{72}\! \left(x \right)\\
F_{72}\! \left(x \right) &= F_{14}\! \left(x \right) F_{73}\! \left(x \right)\\
F_{73}\! \left(x \right) &= F_{74}\! \left(x \right)\\
F_{74}\! \left(x \right) &= F_{14}\! \left(x \right) F_{75}\! \left(x \right)\\
F_{75}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{73}\! \left(x \right)\\
F_{76}\! \left(x \right) &= F_{77}\! \left(x \right)\\
F_{77}\! \left(x \right) &= F_{14}\! \left(x \right) F_{70}\! \left(x \right)\\
F_{78}\! \left(x \right) &= F_{79}\! \left(x \right)+F_{88}\! \left(x \right)\\
F_{79}\! \left(x \right) &= F_{80}\! \left(x \right)\\
F_{80}\! \left(x \right) &= F_{14}\! \left(x \right) F_{81}\! \left(x \right)\\
F_{81}\! \left(x \right) &= F_{82}\! \left(x \right)+F_{85}\! \left(x \right)\\
F_{82}\! \left(x \right) &= F_{71}\! \left(x \right)+F_{83}\! \left(x \right)\\
F_{83}\! \left(x \right) &= F_{84}\! \left(x \right)\\
F_{84}\! \left(x \right) &= F_{14}\! \left(x \right) F_{71}\! \left(x \right)\\
F_{85}\! \left(x \right) &= F_{79}\! \left(x \right)+F_{86}\! \left(x \right)\\
F_{86}\! \left(x \right) &= F_{87}\! \left(x \right)\\
F_{87}\! \left(x \right) &= F_{14}\! \left(x \right) F_{79}\! \left(x \right)\\
F_{88}\! \left(x \right) &= F_{89}\! \left(x \right)\\
F_{89}\! \left(x \right) &= F_{14}\! \left(x \right) F_{78}\! \left(x \right)\\
F_{90}\! \left(x \right) &= F_{14}\! \left(x \right) F_{91}\! \left(x \right)\\
F_{91}\! \left(x \right) &= F_{92}\! \left(x \right)+F_{97}\! \left(x \right)\\
F_{92}\! \left(x \right) &= F_{73}\! \left(x \right)+F_{93}\! \left(x \right)\\
F_{93}\! \left(x \right) &= F_{51}\! \left(x \right)+F_{94}\! \left(x \right)+F_{96}\! \left(x \right)\\
F_{94}\! \left(x \right) &= F_{14}\! \left(x \right) F_{95}\! \left(x \right)\\
F_{95}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{93}\! \left(x \right)\\
F_{96}\! \left(x \right) &= F_{14}\! \left(x \right) F_{92}\! \left(x \right)\\
F_{97}\! \left(x \right) &= F_{117}\! \left(x \right)+F_{98}\! \left(x \right)\\
F_{98}\! \left(x \right) &= F_{104}\! \left(x \right)+F_{51}\! \left(x \right)+F_{99}\! \left(x \right)\\
F_{99}\! \left(x \right) &= F_{100}\! \left(x \right) F_{14}\! \left(x \right)\\
F_{100}\! \left(x \right) &= F_{101}\! \left(x \right)+F_{73}\! \left(x \right)\\
F_{101}\! \left(x \right) &= F_{102}\! \left(x \right)+F_{51}\! \left(x \right)+F_{99}\! \left(x \right)\\
F_{102}\! \left(x \right) &= F_{103}\! \left(x \right) F_{14}\! \left(x \right)\\
F_{103}\! \left(x \right) &= F_{101}\! \left(x \right)+F_{73}\! \left(x \right)\\
F_{104}\! \left(x \right) &= F_{105}\! \left(x \right) F_{14}\! \left(x \right)\\
F_{105}\! \left(x \right) &= F_{106}\! \left(x \right)+F_{110}\! \left(x \right)\\
F_{106}\! \left(x \right) &= F_{107}\! \left(x \right)+F_{73}\! \left(x \right)\\
F_{107}\! \left(x \right) &= F_{108}\! \left(x \right)+F_{51}\! \left(x \right)+F_{72}\! \left(x \right)\\
F_{108}\! \left(x \right) &= F_{109}\! \left(x \right) F_{14}\! \left(x \right)\\
F_{109}\! \left(x \right) &= F_{107}\! \left(x \right)+F_{14}\! \left(x \right)\\
F_{110}\! \left(x \right) &= F_{111}\! \left(x \right)+F_{98}\! \left(x \right)\\
F_{111}\! \left(x \right) &= 2 F_{51}\! \left(x \right)+F_{112}\! \left(x \right)+F_{116}\! \left(x \right)\\
F_{112}\! \left(x \right) &= F_{113}\! \left(x \right) F_{14}\! \left(x \right)\\
F_{113}\! \left(x \right) &= F_{114}\! \left(x \right)+F_{71}\! \left(x \right)\\
F_{114}\! \left(x \right) &= 2 F_{51}\! \left(x \right)+F_{112}\! \left(x \right)+F_{115}\! \left(x \right)\\
F_{115}\! \left(x \right) &= F_{101}\! \left(x \right) F_{14}\! \left(x \right)\\
F_{116}\! \left(x \right) &= F_{14}\! \left(x \right) F_{98}\! \left(x \right)\\
F_{117}\! \left(x \right) &= 2 F_{51}\! \left(x \right)+F_{118}\! \left(x \right)+F_{126}\! \left(x \right)\\
F_{118}\! \left(x \right) &= F_{119}\! \left(x \right) F_{14}\! \left(x \right)\\
F_{119}\! \left(x \right) &= F_{120}\! \left(x \right)+F_{123}\! \left(x \right)\\
F_{120}\! \left(x \right) &= F_{121}\! \left(x \right)\\
F_{121}\! \left(x \right) &= F_{122}\! \left(x \right) F_{14}\! \left(x \right)\\
F_{122}\! \left(x \right) &= F_{120}\! \left(x \right)+F_{73}\! \left(x \right)\\
F_{123}\! \left(x \right) &= 2 F_{51}\! \left(x \right)+F_{118}\! \left(x \right)+F_{124}\! \left(x \right)\\
F_{124}\! \left(x \right) &= F_{125}\! \left(x \right) F_{14}\! \left(x \right)\\
F_{125}\! \left(x \right) &= F_{101}\! \left(x \right)+F_{123}\! \left(x \right)\\
F_{126}\! \left(x \right) &= F_{14}\! \left(x \right) F_{97}\! \left(x \right)\\
F_{127}\! \left(x \right) &= F_{128}\! \left(x \right)+F_{143}\! \left(x \right)\\
F_{128}\! \left(x \right) &= F_{129}\! \left(x \right)+F_{141}\! \left(x \right)+F_{51}\! \left(x \right)\\
F_{129}\! \left(x \right) &= F_{130}\! \left(x \right) F_{14}\! \left(x \right)\\
F_{130}\! \left(x \right) &= F_{131}\! \left(x \right)+F_{134}\! \left(x \right)\\
F_{131}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{132}\! \left(x \right)\\
F_{132}\! \left(x \right) &= F_{133}\! \left(x \right)\\
F_{133}\! \left(x \right) &= F_{12}\! \left(x \right) F_{14}\! \left(x \right)\\
F_{134}\! \left(x \right) &= F_{128}\! \left(x \right)+F_{135}\! \left(x \right)\\
F_{135}\! \left(x \right) &= 2 F_{51}\! \left(x \right)+F_{136}\! \left(x \right)+F_{140}\! \left(x \right)\\
F_{136}\! \left(x \right) &= F_{137}\! \left(x \right) F_{14}\! \left(x \right)\\
F_{137}\! \left(x \right) &= F_{138}\! \left(x \right)+F_{139}\! \left(x \right)\\
F_{138}\! \left(x \right) &= F_{132}\! \left(x \right)\\
F_{139}\! \left(x \right) &= F_{135}\! \left(x \right)\\
F_{140}\! \left(x \right) &= F_{128}\! \left(x \right) F_{14}\! \left(x \right)\\
F_{141}\! \left(x \right) &= F_{14}\! \left(x \right) F_{142}\! \left(x \right)\\
F_{142}\! \left(x \right) &= F_{128}\! \left(x \right)+F_{46}\! \left(x \right)\\
F_{143}\! \left(x \right) &= 2 F_{51}\! \left(x \right)+F_{144}\! \left(x \right)+F_{68}\! \left(x \right)\\
F_{144}\! \left(x \right) &= F_{14}\! \left(x \right) F_{145}\! \left(x \right)\\
F_{145}\! \left(x \right) &= F_{146}\! \left(x \right)+F_{147}\! \left(x \right)\\
F_{146}\! \left(x \right) &= F_{26}\! \left(x \right)\\
F_{147}\! \left(x \right) &= F_{143}\! \left(x \right)\\
F_{148}\! \left(x \right) &= F_{14}\! \left(x \right) F_{149}\! \left(x \right)\\
F_{149}\! \left(x \right) &= F_{150}\! \left(x , 1\right)\\
F_{150}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{151}\! \left(x , y\right)+F_{153}\! \left(x , y\right)+F_{155}\! \left(x , y\right)\\
F_{151}\! \left(x , y\right) &= F_{150}\! \left(x , y\right) F_{152}\! \left(x , y\right)\\
F_{152}\! \left(x , y\right) &= y x\\
F_{153}\! \left(x , y\right) &= F_{14}\! \left(x \right) F_{154}\! \left(x , y\right)\\
F_{154}\! \left(x , y\right) &= -\frac{-y F_{150}\! \left(x , y\right)+F_{150}\! \left(x , 1\right)}{-1+y}\\
F_{155}\! \left(x , y\right) &= F_{14}\! \left(x \right) F_{156}\! \left(x , y\right)\\
F_{156}\! \left(x , y\right) &= F_{157}\! \left(x , y\right)+F_{5}\! \left(x \right)\\
F_{157}\! \left(x , y\right) &= F_{158}\! \left(x , y\right)+F_{223}\! \left(x , y\right)\\
F_{158}\! \left(x , y\right) &= F_{159}\! \left(x , y\right)+F_{201}\! \left(x , y\right)\\
F_{159}\! \left(x , y\right) &= F_{160}\! \left(x , y\right)+F_{163}\! \left(x , y\right)\\
F_{160}\! \left(x , y\right) &= F_{161}\! \left(x , y\right)\\
F_{161}\! \left(x , y\right) &= F_{152}\! \left(x , y\right) F_{162}\! \left(x , y\right)\\
F_{162}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{160}\! \left(x , y\right)\\
F_{163}\! \left(x , y\right) &= F_{164}\! \left(x , y\right)+F_{166}\! \left(x , y\right)+F_{51}\! \left(x \right)\\
F_{164}\! \left(x , y\right) &= F_{152}\! \left(x , y\right) F_{165}\! \left(x , y\right)\\
F_{165}\! \left(x , y\right) &= F_{163}\! \left(x , y\right)+F_{8}\! \left(x \right)\\
F_{166}\! \left(x , y\right) &= F_{14}\! \left(x \right) F_{167}\! \left(x , y\right)\\
F_{167}\! \left(x , y\right) &= F_{168}\! \left(x , y\right)+F_{173}\! \left(x , y\right)\\
F_{168}\! \left(x , y\right) &= F_{160}\! \left(x , y\right)+F_{169}\! \left(x , y\right)\\
F_{169}\! \left(x , y\right) &= F_{170}\! \left(x , y\right)+F_{172}\! \left(x , y\right)+F_{51}\! \left(x \right)\\
F_{170}\! \left(x , y\right) &= F_{152}\! \left(x , y\right) F_{171}\! \left(x , y\right)\\
F_{171}\! \left(x , y\right) &= F_{12}\! \left(x \right)+F_{169}\! \left(x , y\right)\\
F_{172}\! \left(x , y\right) &= F_{14}\! \left(x \right) F_{168}\! \left(x , y\right)\\
F_{173}\! \left(x , y\right) &= F_{174}\! \left(x , y\right)+F_{194}\! \left(x , y\right)\\
F_{174}\! \left(x , y\right) &= F_{175}\! \left(x , y\right)+F_{180}\! \left(x , y\right)+F_{51}\! \left(x \right)\\
F_{175}\! \left(x , y\right) &= F_{152}\! \left(x , y\right) F_{176}\! \left(x , y\right)\\
F_{176}\! \left(x , y\right) &= F_{177}\! \left(x , y\right)+F_{73}\! \left(x \right)\\
F_{177}\! \left(x , y\right) &= F_{175}\! \left(x , y\right)+F_{178}\! \left(x , y\right)+F_{51}\! \left(x \right)\\
F_{178}\! \left(x , y\right) &= F_{14}\! \left(x \right) F_{179}\! \left(x , y\right)\\
F_{179}\! \left(x , y\right) &= F_{160}\! \left(x , y\right)+F_{177}\! \left(x , y\right)\\
F_{180}\! \left(x , y\right) &= F_{14}\! \left(x \right) F_{181}\! \left(x , y\right)\\
F_{181}\! \left(x , y\right) &= F_{182}\! \left(x , y\right)+F_{187}\! \left(x , y\right)\\
F_{182}\! \left(x , y\right) &= F_{160}\! \left(x , y\right)+F_{183}\! \left(x , y\right)\\
F_{183}\! \left(x , y\right) &= F_{184}\! \left(x , y\right)+F_{186}\! \left(x , y\right)+F_{51}\! \left(x \right)\\
F_{184}\! \left(x , y\right) &= F_{152}\! \left(x , y\right) F_{185}\! \left(x , y\right)\\
F_{185}\! \left(x , y\right) &= F_{14}\! \left(x \right)+F_{183}\! \left(x , y\right)\\
F_{186}\! \left(x , y\right) &= F_{14}\! \left(x \right) F_{160}\! \left(x , y\right)\\
F_{187}\! \left(x , y\right) &= F_{174}\! \left(x , y\right)+F_{188}\! \left(x , y\right)\\
F_{188}\! \left(x , y\right) &= 2 F_{51}\! \left(x \right)+F_{189}\! \left(x , y\right)+F_{193}\! \left(x , y\right)\\
F_{189}\! \left(x , y\right) &= F_{152}\! \left(x , y\right) F_{190}\! \left(x , y\right)\\
F_{190}\! \left(x , y\right) &= F_{191}\! \left(x , y\right)+F_{71}\! \left(x \right)\\
F_{191}\! \left(x , y\right) &= 2 F_{51}\! \left(x \right)+F_{189}\! \left(x , y\right)+F_{192}\! \left(x , y\right)\\
F_{192}\! \left(x , y\right) &= F_{14}\! \left(x \right) F_{177}\! \left(x , y\right)\\
F_{193}\! \left(x , y\right) &= F_{14}\! \left(x \right) F_{174}\! \left(x , y\right)\\
F_{194}\! \left(x , y\right) &= 2 F_{51}\! \left(x \right)+F_{195}\! \left(x , y\right)+F_{200}\! \left(x , y\right)\\
F_{195}\! \left(x , y\right) &= F_{152}\! \left(x , y\right) F_{196}\! \left(x , y\right)\\
F_{196}\! \left(x , y\right) &= F_{120}\! \left(x \right)+F_{197}\! \left(x , y\right)\\
F_{197}\! \left(x , y\right) &= 2 F_{51}\! \left(x \right)+F_{195}\! \left(x , y\right)+F_{198}\! \left(x , y\right)\\
F_{198}\! \left(x , y\right) &= F_{14}\! \left(x \right) F_{199}\! \left(x , y\right)\\
F_{199}\! \left(x , y\right) &= F_{177}\! \left(x , y\right)+F_{197}\! \left(x , y\right)\\
F_{200}\! \left(x , y\right) &= F_{14}\! \left(x \right) F_{173}\! \left(x , y\right)\\
F_{201}\! \left(x , y\right) &= F_{169}\! \left(x , y\right)+F_{202}\! \left(x , y\right)\\
F_{202}\! \left(x , y\right) &= 2 F_{51}\! \left(x \right)+F_{203}\! \left(x , y\right)+F_{205}\! \left(x , y\right)\\
F_{203}\! \left(x , y\right) &= F_{152}\! \left(x , y\right) F_{204}\! \left(x , y\right)\\
F_{204}\! \left(x , y\right) &= F_{202}\! \left(x , y\right)+F_{26}\! \left(x \right)\\
F_{205}\! \left(x , y\right) &= F_{14}\! \left(x \right) F_{206}\! \left(x , y\right)\\
F_{206}\! \left(x , y\right) &= F_{207}\! \left(x , y\right)+F_{211}\! \left(x , y\right)\\
F_{207}\! \left(x , y\right) &= F_{208}\! \left(x , y\right)+F_{209}\! \left(x , y\right)\\
F_{208}\! \left(x , y\right) &= F_{186}\! \left(x , y\right)\\
F_{209}\! \left(x , y\right) &= F_{210}\! \left(x , y\right)\\
F_{210}\! \left(x , y\right) &= F_{14}\! \left(x \right) F_{207}\! \left(x , y\right)\\
F_{211}\! \left(x , y\right) &= F_{212}\! \left(x , y\right)+F_{221}\! \left(x , y\right)\\
F_{212}\! \left(x , y\right) &= F_{213}\! \left(x , y\right)\\
F_{213}\! \left(x , y\right) &= F_{14}\! \left(x \right) F_{214}\! \left(x , y\right)\\
F_{214}\! \left(x , y\right) &= F_{215}\! \left(x , y\right)+F_{218}\! \left(x , y\right)\\
F_{215}\! \left(x , y\right) &= F_{208}\! \left(x , y\right)+F_{216}\! \left(x , y\right)\\
F_{216}\! \left(x , y\right) &= F_{217}\! \left(x , y\right)\\
F_{217}\! \left(x , y\right) &= F_{14}\! \left(x \right) F_{208}\! \left(x , y\right)\\
F_{218}\! \left(x , y\right) &= F_{212}\! \left(x , y\right)+F_{219}\! \left(x , y\right)\\
F_{219}\! \left(x , y\right) &= F_{220}\! \left(x , y\right)\\
F_{220}\! \left(x , y\right) &= F_{14}\! \left(x \right) F_{212}\! \left(x , y\right)\\
F_{221}\! \left(x , y\right) &= F_{222}\! \left(x , y\right)\\
F_{222}\! \left(x , y\right) &= F_{14}\! \left(x \right) F_{211}\! \left(x , y\right)\\
F_{223}\! \left(x , y\right) &= F_{224}\! \left(x , y\right)+F_{306}\! \left(x , y\right)\\
F_{224}\! \left(x , y\right) &= F_{225}\! \left(x , y\right)+F_{236}\! \left(x , y\right)\\
F_{225}\! \left(x , y\right) &= F_{184}\! \left(x , y\right)+F_{226}\! \left(x , y\right)+F_{51}\! \left(x \right)\\
F_{226}\! \left(x , y\right) &= F_{14}\! \left(x \right) F_{227}\! \left(x , y\right)\\
F_{227}\! \left(x , y\right) &= F_{182}\! \left(x , y\right)+F_{228}\! \left(x , y\right)\\
F_{228}\! \left(x , y\right) &= F_{225}\! \left(x , y\right)+F_{229}\! \left(x , y\right)\\
F_{229}\! \left(x , y\right) &= F_{230}\! \left(x , y\right)+F_{231}\! \left(x , y\right)+F_{235}\! \left(x , y\right)+F_{51}\! \left(x \right)\\
F_{230}\! \left(x , y\right) &= 0\\
F_{231}\! \left(x , y\right) &= F_{14}\! \left(x \right) F_{232}\! \left(x , y\right)\\
F_{232}\! \left(x , y\right) &= F_{233}\! \left(x , y\right)+F_{234}\! \left(x , y\right)\\
F_{233}\! \left(x , y\right) &= F_{183}\! \left(x , y\right)\\
F_{234}\! \left(x , y\right) &= F_{229}\! \left(x , y\right)\\
F_{235}\! \left(x , y\right) &= F_{14}\! \left(x \right) F_{225}\! \left(x , y\right)\\
F_{236}\! \left(x , y\right) &= F_{237}\! \left(x , y\right)+F_{240}\! \left(x , y\right)+F_{272}\! \left(x , y\right)+F_{51}\! \left(x \right)\\
F_{237}\! \left(x , y\right) &= F_{152}\! \left(x , y\right) F_{238}\! \left(x , y\right)\\
F_{238}\! \left(x , y\right) &= F_{239}\! \left(x , y\right)+F_{61}\! \left(x \right)\\
F_{239}\! \left(x , y\right) &= 2 F_{51}\! \left(x \right)+F_{205}\! \left(x , y\right)+F_{237}\! \left(x , y\right)\\
F_{240}\! \left(x , y\right) &= F_{14}\! \left(x \right) F_{241}\! \left(x , y\right)\\
F_{241}\! \left(x , y\right) &= F_{242}\! \left(x , y\right)+F_{243}\! \left(x , y\right)\\
F_{242}\! \left(x , y\right) &= F_{163}\! \left(x , y\right)+F_{239}\! \left(x , y\right)\\
F_{243}\! \left(x , y\right) &= F_{236}\! \left(x , y\right)+F_{244}\! \left(x , y\right)\\
F_{244}\! \left(x , y\right) &= 2 F_{51}\! \left(x \right)+F_{245}\! \left(x , y\right)+F_{246}\! \left(x , y\right)+F_{250}\! \left(x , y\right)\\
F_{245}\! \left(x , y\right) &= 0\\
F_{246}\! \left(x , y\right) &= F_{14}\! \left(x \right) F_{247}\! \left(x , y\right)\\
F_{247}\! \left(x , y\right) &= F_{248}\! \left(x , y\right)+F_{249}\! \left(x , y\right)\\
F_{248}\! \left(x , y\right) &= F_{239}\! \left(x , y\right)\\
F_{249}\! \left(x , y\right) &= F_{244}\! \left(x , y\right)\\
F_{250}\! \left(x , y\right) &= F_{14}\! \left(x \right) F_{251}\! \left(x , y\right)\\
F_{251}\! \left(x , y\right) &= F_{252}\! \left(x , y\right)+F_{260}\! \left(x , y\right)\\
F_{252}\! \left(x , y\right) &= F_{253}\! \left(x , y\right)+F_{258}\! \left(x , y\right)\\
F_{253}\! \left(x , y\right) &= F_{254}\! \left(x , y\right)\\
F_{254}\! \left(x , y\right) &= F_{14}\! \left(x \right) F_{255}\! \left(x , y\right)\\
F_{255}\! \left(x , y\right) &= F_{256}\! \left(x , y\right)\\
F_{256}\! \left(x , y\right) &= F_{14}\! \left(x \right) F_{257}\! \left(x , y\right)\\
F_{257}\! \left(x , y\right) &= F_{160}\! \left(x , y\right)+F_{255}\! \left(x , y\right)\\
F_{258}\! \left(x , y\right) &= F_{259}\! \left(x , y\right)\\
F_{259}\! \left(x , y\right) &= F_{14}\! \left(x \right) F_{252}\! \left(x , y\right)\\
F_{260}\! \left(x , y\right) &= F_{261}\! \left(x , y\right)+F_{270}\! \left(x , y\right)\\
F_{261}\! \left(x , y\right) &= F_{262}\! \left(x , y\right)\\
F_{262}\! \left(x , y\right) &= F_{14}\! \left(x \right) F_{263}\! \left(x , y\right)\\
F_{263}\! \left(x , y\right) &= F_{264}\! \left(x , y\right)+F_{267}\! \left(x , y\right)\\
F_{264}\! \left(x , y\right) &= F_{253}\! \left(x , y\right)+F_{265}\! \left(x , y\right)\\
F_{265}\! \left(x , y\right) &= F_{266}\! \left(x , y\right)\\
F_{266}\! \left(x , y\right) &= F_{14}\! \left(x \right) F_{253}\! \left(x , y\right)\\
F_{267}\! \left(x , y\right) &= F_{261}\! \left(x , y\right)+F_{268}\! \left(x , y\right)\\
F_{268}\! \left(x , y\right) &= F_{269}\! \left(x , y\right)\\
F_{269}\! \left(x , y\right) &= F_{14}\! \left(x \right) F_{261}\! \left(x , y\right)\\
F_{270}\! \left(x , y\right) &= F_{271}\! \left(x , y\right)\\
F_{271}\! \left(x , y\right) &= F_{14}\! \left(x \right) F_{260}\! \left(x , y\right)\\
F_{272}\! \left(x , y\right) &= F_{14}\! \left(x \right) F_{273}\! \left(x , y\right)\\
F_{273}\! \left(x , y\right) &= F_{274}\! \left(x , y\right)+F_{279}\! \left(x , y\right)\\
F_{274}\! \left(x , y\right) &= F_{255}\! \left(x , y\right)+F_{275}\! \left(x , y\right)\\
F_{275}\! \left(x , y\right) &= 2 F_{51}\! \left(x \right)+F_{276}\! \left(x , y\right)+F_{278}\! \left(x , y\right)\\
F_{276}\! \left(x , y\right) &= F_{14}\! \left(x \right) F_{277}\! \left(x , y\right)\\
F_{277}\! \left(x , y\right) &= F_{169}\! \left(x , y\right)+F_{275}\! \left(x , y\right)\\
F_{278}\! \left(x , y\right) &= F_{14}\! \left(x \right) F_{274}\! \left(x , y\right)\\
F_{279}\! \left(x , y\right) &= F_{280}\! \left(x , y\right)+F_{299}\! \left(x , y\right)\\
F_{280}\! \left(x , y\right) &= 2 F_{51}\! \left(x \right)+F_{281}\! \left(x , y\right)+F_{286}\! \left(x , y\right)\\
F_{281}\! \left(x , y\right) &= F_{14}\! \left(x \right) F_{282}\! \left(x , y\right)\\
F_{282}\! \left(x , y\right) &= F_{177}\! \left(x , y\right)+F_{283}\! \left(x , y\right)\\
F_{283}\! \left(x , y\right) &= 2 F_{51}\! \left(x \right)+F_{281}\! \left(x , y\right)+F_{284}\! \left(x , y\right)\\
F_{284}\! \left(x , y\right) &= F_{14}\! \left(x \right) F_{285}\! \left(x , y\right)\\
F_{285}\! \left(x , y\right) &= F_{255}\! \left(x , y\right)+F_{283}\! \left(x , y\right)\\
F_{286}\! \left(x , y\right) &= F_{14}\! \left(x \right) F_{287}\! \left(x , y\right)\\
F_{287}\! \left(x , y\right) &= F_{288}\! \left(x , y\right)+F_{292}\! \left(x , y\right)\\
F_{288}\! \left(x , y\right) &= F_{255}\! \left(x , y\right)+F_{289}\! \left(x , y\right)\\
F_{289}\! \left(x , y\right) &= 2 F_{51}\! \left(x \right)+F_{254}\! \left(x , y\right)+F_{290}\! \left(x , y\right)\\
F_{290}\! \left(x , y\right) &= F_{14}\! \left(x \right) F_{291}\! \left(x , y\right)\\
F_{291}\! \left(x , y\right) &= F_{183}\! \left(x , y\right)+F_{289}\! \left(x , y\right)\\
F_{292}\! \left(x , y\right) &= F_{280}\! \left(x , y\right)+F_{293}\! \left(x , y\right)\\
F_{293}\! \left(x , y\right) &= 3 F_{51}\! \left(x \right)+F_{294}\! \left(x , y\right)+F_{298}\! \left(x , y\right)\\
F_{294}\! \left(x , y\right) &= F_{14}\! \left(x \right) F_{295}\! \left(x , y\right)\\
F_{295}\! \left(x , y\right) &= F_{191}\! \left(x , y\right)+F_{296}\! \left(x , y\right)\\
F_{296}\! \left(x , y\right) &= 3 F_{51}\! \left(x \right)+F_{294}\! \left(x , y\right)+F_{297}\! \left(x , y\right)\\
F_{297}\! \left(x , y\right) &= F_{14}\! \left(x \right) F_{283}\! \left(x , y\right)\\
F_{298}\! \left(x , y\right) &= F_{14}\! \left(x \right) F_{280}\! \left(x , y\right)\\
F_{299}\! \left(x , y\right) &= 3 F_{51}\! \left(x \right)+F_{300}\! \left(x , y\right)+F_{305}\! \left(x , y\right)\\
F_{300}\! \left(x , y\right) &= F_{14}\! \left(x \right) F_{301}\! \left(x , y\right)\\
F_{301}\! \left(x , y\right) &= F_{197}\! \left(x , y\right)+F_{302}\! \left(x , y\right)\\
F_{302}\! \left(x , y\right) &= 3 F_{51}\! \left(x \right)+F_{300}\! \left(x , y\right)+F_{303}\! \left(x , y\right)\\
F_{303}\! \left(x , y\right) &= F_{14}\! \left(x \right) F_{304}\! \left(x , y\right)\\
F_{304}\! \left(x , y\right) &= F_{283}\! \left(x , y\right)+F_{302}\! \left(x , y\right)\\
F_{305}\! \left(x , y\right) &= F_{14}\! \left(x \right) F_{279}\! \left(x , y\right)\\
F_{306}\! \left(x , y\right) &= F_{307}\! \left(x , y\right)+F_{325}\! \left(x , y\right)\\
F_{307}\! \left(x , y\right) &= F_{308}\! \left(x , y\right)+F_{312}\! \left(x , y\right)+F_{323}\! \left(x , y\right)+F_{51}\! \left(x \right)\\
F_{308}\! \left(x , y\right) &= F_{152}\! \left(x , y\right) F_{309}\! \left(x , y\right)\\
F_{309}\! \left(x , y\right) &= F_{132}\! \left(x \right)+F_{310}\! \left(x , y\right)\\
F_{310}\! \left(x , y\right) &= 2 F_{51}\! \left(x \right)+F_{308}\! \left(x , y\right)+F_{311}\! \left(x , y\right)\\
F_{311}\! \left(x , y\right) &= F_{14}\! \left(x \right) F_{169}\! \left(x , y\right)\\
F_{312}\! \left(x , y\right) &= F_{14}\! \left(x \right) F_{313}\! \left(x , y\right)\\
F_{313}\! \left(x , y\right) &= F_{314}\! \left(x , y\right)+F_{315}\! \left(x , y\right)\\
F_{314}\! \left(x , y\right) &= F_{169}\! \left(x , y\right)+F_{310}\! \left(x , y\right)\\
F_{315}\! \left(x , y\right) &= F_{307}\! \left(x , y\right)+F_{316}\! \left(x , y\right)\\
F_{316}\! \left(x , y\right) &= 2 F_{51}\! \left(x \right)+F_{317}\! \left(x , y\right)+F_{318}\! \left(x , y\right)+F_{322}\! \left(x , y\right)\\
F_{317}\! \left(x , y\right) &= 0\\
F_{318}\! \left(x , y\right) &= F_{14}\! \left(x \right) F_{319}\! \left(x , y\right)\\
F_{319}\! \left(x , y\right) &= F_{320}\! \left(x , y\right)+F_{321}\! \left(x , y\right)\\
F_{320}\! \left(x , y\right) &= F_{310}\! \left(x , y\right)\\
F_{321}\! \left(x , y\right) &= F_{316}\! \left(x , y\right)\\
F_{322}\! \left(x , y\right) &= F_{14}\! \left(x \right) F_{307}\! \left(x , y\right)\\
F_{323}\! \left(x , y\right) &= F_{14}\! \left(x \right) F_{324}\! \left(x , y\right)\\
F_{324}\! \left(x , y\right) &= F_{225}\! \left(x , y\right)+F_{307}\! \left(x , y\right)\\
F_{325}\! \left(x , y\right) &= 2 F_{51}\! \left(x \right)+F_{250}\! \left(x , y\right)+F_{326}\! \left(x , y\right)+F_{327}\! \left(x , y\right)\\
F_{326}\! \left(x , y\right) &= 0\\
F_{327}\! \left(x , y\right) &= F_{14}\! \left(x \right) F_{328}\! \left(x , y\right)\\
F_{328}\! \left(x , y\right) &= F_{329}\! \left(x , y\right)+F_{330}\! \left(x , y\right)\\
F_{329}\! \left(x , y\right) &= F_{202}\! \left(x , y\right)\\
F_{330}\! \left(x , y\right) &= F_{325}\! \left(x , y\right)\\
\end{align*}\)