Av(1243, 1324, 2314, 3124, 3214)
Generating Function
\(\displaystyle -\frac{x^{3}+3 x^{2}-4 x +1}{x^{3}-6 x^{2}+5 x -1}\)
Counting Sequence
1, 1, 2, 6, 19, 61, 197, 638, 2069, 6714, 21794, 70755, 229725, 745889, 2421850, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x^{3}-6 x^{2}+5 x -1\right) F \! \left(x \right)+x^{3}+3 x^{2}-4 x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(n +3\right) = a \! \left(n \right)-6 a \! \left(n +1\right)+5 a \! \left(n +2\right), \quad n \geq 4\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(n +3\right) = a \! \left(n \right)-6 a \! \left(n +1\right)+5 a \! \left(n +2\right), \quad n \geq 4\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}1 & n =0 \\ \frac{\left(\left(12 \,\mathrm{I} \sqrt{3}-10\right) \left(756+84 \,\mathrm{I} \sqrt{3}\right)^{\frac{2}{3}}-98 \,\mathrm{I} \left(756+84 \,\mathrm{I} \sqrt{3}\right)^{\frac{1}{3}} \sqrt{3}-126 \left(756+84 \,\mathrm{I} \sqrt{3}\right)^{\frac{1}{3}}+2352\right) \left(\frac{\left(5 \,\mathrm{I} \sqrt{3}-3\right) \left(756+84 \,\mathrm{I} \sqrt{3}\right)^{\frac{2}{3}}}{504}-\frac{\mathrm{I} \sqrt{3}\, \left(756+84 \,\mathrm{I} \sqrt{3}\right)^{\frac{1}{3}}}{12}-\frac{\left(756+84 \,\mathrm{I} \sqrt{3}\right)^{\frac{1}{3}}}{12}+2\right)^{-n}}{3528}\\+\\\frac{\left(\left(-11 \,\mathrm{I} \sqrt{3}-13\right) \left(756+84 \,\mathrm{I} \sqrt{3}\right)^{\frac{2}{3}}+112 \,\mathrm{I} \left(756+84 \,\mathrm{I} \sqrt{3}\right)^{\frac{1}{3}} \sqrt{3}-84 \left(756+84 \,\mathrm{I} \sqrt{3}\right)^{\frac{1}{3}}+2352\right) \left(\frac{\left(-2 \,\mathrm{I} \sqrt{3}-3\right) \left(756+84 \,\mathrm{I} \sqrt{3}\right)^{\frac{2}{3}}}{252}+\frac{\mathrm{I} \sqrt{3}\, \left(756+84 \,\mathrm{I} \sqrt{3}\right)^{\frac{1}{3}}}{12}-\frac{\left(756+84 \,\mathrm{I} \sqrt{3}\right)^{\frac{1}{3}}}{12}+2\right)^{-n}}{3528}\\-\\\frac{\left(\frac{\left(756+84 \,\mathrm{I} \sqrt{3}\right)^{\frac{1}{3}}}{6}+2+\frac{\left(756+84 \,\mathrm{I} \sqrt{3}\right)^{\frac{2}{3}}}{56}-\frac{\mathrm{I} \sqrt{3}\, \left(756+84 \,\mathrm{I} \sqrt{3}\right)^{\frac{2}{3}}}{504}\right)^{-n} \left(\left(\frac{\mathrm{I} \sqrt{3}}{14}-\frac{23}{14}\right) \left(756+84 \,\mathrm{I} \sqrt{3}\right)^{\frac{2}{3}}+\mathrm{I} \left(756+84 \,\mathrm{I} \sqrt{3}\right)^{\frac{1}{3}} \sqrt{3}-15 \left(756+84 \,\mathrm{I} \sqrt{3}\right)^{\frac{1}{3}}-168\right)}{252} & \text{otherwise} \end{array}\right.\)
This specification was found using the strategy pack "Point Placements" and has 49 rules.
Found on January 18, 2022.Finding the specification took 1 seconds.
Copy 49 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{4}\! \left(x \right) &= x\\
F_{5}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{13}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{13}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{19}\! \left(x \right)+F_{47}\! \left(x \right)\\
F_{18}\! \left(x \right) &= 0\\
F_{19}\! \left(x \right) &= F_{20}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{28}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{24}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{25}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{26}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{25}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{29}\! \left(x \right)+F_{38}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{31}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{35}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{33}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{32}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{29}\! \left(x \right)+F_{36}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{37}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{35}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{39}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{4}\! \left(x \right) F_{40}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{41}\! \left(x \right)+F_{44}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{42}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{43}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{4}\! \left(x \right) F_{41}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{38}\! \left(x \right)+F_{45}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{46}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{4}\! \left(x \right) F_{44}\! \left(x \right)\\
F_{47}\! \left(x \right) &= F_{4}\! \left(x \right) F_{48}\! \left(x \right)\\
F_{48}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{41}\! \left(x \right)\\
\end{align*}\)