Av(1243, 1324, 2314, 2413, 4123)
View Raw Data
Generating Function
\(\displaystyle \frac{3 x^{4}+2 x^{3}-8 x^{2}+5 x -1}{\left(x^{2}-3 x +1\right) \left(x^{2}+x -1\right) \left(x -1\right)^{2}}\)
Counting Sequence
1, 1, 2, 6, 19, 56, 157, 427, 1142, 3026, 7977, 20968, 55025, 144261, 378002, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x^{2}-3 x +1\right) \left(x^{2}+x -1\right) \left(x -1\right)^{2} F \! \left(x \right)-3 x^{4}-2 x^{3}+8 x^{2}-5 x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(n +4\right) = a \! \left(n \right)-2 a \! \left(n +1\right)-3 a \! \left(n +2\right)+4 a \! \left(n +3\right)-n +2, \quad n \geq 5\)
Explicit Closed Form
\(\displaystyle \frac{\left(7 \sqrt{5}-5\right) \left(\frac{3}{2}-\frac{\sqrt{5}}{2}\right)^{-n}}{20}+\frac{\left(-7 \sqrt{5}-5\right) \left(\frac{3}{2}+\frac{\sqrt{5}}{2}\right)^{-n}}{20}+\frac{\left(3 \sqrt{5}-5\right) \left(-\frac{\sqrt{5}}{2}-\frac{1}{2}\right)^{-n}}{20}+\frac{\left(-3 \sqrt{5}-5\right) \left(\frac{\sqrt{5}}{2}-\frac{1}{2}\right)^{-n}}{20}-n +2\)

This specification was found using the strategy pack "Point Placements" and has 33 rules.

Found on January 18, 2022.

Finding the specification took 0 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 33 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{12}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{12}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{10}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{12}\! \left(x \right) &= x\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{12}\! \left(x \right) F_{16}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{6}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{20}\! \left(x \right)+F_{24}\! \left(x \right)\\ F_{19}\! \left(x \right) &= 0\\ F_{20}\! \left(x \right) &= F_{12}\! \left(x \right) F_{21}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{23}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{6}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{18}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{12}\! \left(x \right) F_{25}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{32}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{27}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{12}\! \left(x \right) F_{29}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{31}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{10}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{27}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{18}\! \left(x \right)\\ \end{align*}\)