Av(1243, 1324, 2314, 2341, 4213)
View Raw Data
Generating Function
\(\displaystyle \frac{x^{9}-2 x^{8}-5 x^{7}+9 x^{6}-2 x^{5}-15 x^{4}+27 x^{3}-20 x^{2}+7 x -1}{\left(2 x -1\right) \left(x^{2}+x -1\right) \left(-1+x \right)^{5}}\)
Counting Sequence
1, 1, 2, 6, 19, 55, 143, 341, 765, 1647, 3452, 7113, 14503, 29382, 59296, ...
Implicit Equation for the Generating Function
\(\displaystyle -\left(2 x -1\right) \left(x^{2}+x -1\right) \left(-1+x \right)^{5} F \! \left(x \right)+x^{9}-2 x^{8}-5 x^{7}+9 x^{6}-2 x^{5}-15 x^{4}+27 x^{3}-20 x^{2}+7 x -1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 55\)
\(\displaystyle a \! \left(6\right) = 143\)
\(\displaystyle a \! \left(7\right) = 341\)
\(\displaystyle a \! \left(8\right) = 765\)
\(\displaystyle a \! \left(9\right) = 1647\)
\(\displaystyle a \! \left(n +3\right) = -2 a \! \left(n \right)-a \! \left(n +1\right)+3 a \! \left(n +2\right)+\frac{n \left(n +1\right) \left(n^{2}-19 n +66\right)}{24}, \quad n \geq 10\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}1 & n =0\text{ or } n =1 \\ \frac{\left(84 \sqrt{5}-180\right) \left(-\frac{\sqrt{5}}{2}-\frac{1}{2}\right)^{-n}}{120}+\frac{\left(-84 \sqrt{5}-180\right) \left(\frac{\sqrt{5}}{2}-\frac{1}{2}\right)^{-n}}{120}+\frac{n^{4}}{24}-\\\frac{5 n^{3}}{12}-\frac{n^{2}}{24}-\frac{7 n}{12}+\frac{15 \,2^{n}}{4}-1 & \text{otherwise} \end{array}\right.\)

This specification was found using the strategy pack "Point Placements" and has 59 rules.

Found on January 18, 2022.

Finding the specification took 1 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 59 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{4}\! \left(x \right) &= x\\ F_{5}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{13}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{16}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{7}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{27}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{20}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{22}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{24}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{26}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{18}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{22}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{29}\! \left(x \right)+F_{48}\! \left(x \right)\\ F_{28}\! \left(x \right) &= 0\\ F_{29}\! \left(x \right) &= F_{30}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{42}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{33}\! \left(x \right)+F_{39}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{34}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{35}\! \left(x \right)+F_{38}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{36}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{37}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{35}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{14}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{4}\! \left(x \right) F_{40}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{41}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{32}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{43}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{44}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{4}\! \left(x \right) F_{45}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{46}\! \left(x \right)+F_{47}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{22}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{44}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{4}\! \left(x \right) F_{49}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{50}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{51}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{48}\! \left(x \right)+F_{52}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{4}\! \left(x \right) F_{53}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{54}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{55}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{56}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{4}\! \left(x \right) F_{57}\! \left(x \right)\\ F_{57}\! \left(x \right) &= F_{46}\! \left(x \right)+F_{58}\! \left(x \right)\\ F_{58}\! \left(x \right) &= F_{55}\! \left(x \right)\\ \end{align*}\)