Av(1243, 1324, 2314, 2341, 3412)
Generating Function
\(\displaystyle -\frac{x^{7}+x^{6}+4 x^{5}-12 x^{4}+18 x^{3}-15 x^{2}+6 x -1}{\left(2 x -1\right) \left(x -1\right)^{5}}\)
Counting Sequence
1, 1, 2, 6, 19, 55, 143, 340, 757, 1611, 3329, 6756, 13571, 27119, 54075, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(2 x -1\right) \left(x -1\right)^{5} F \! \left(x \right)+x^{7}+x^{6}+4 x^{5}-12 x^{4}+18 x^{3}-15 x^{2}+6 x -1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 55\)
\(\displaystyle a \! \left(6\right) = 143\)
\(\displaystyle a \! \left(7\right) = 340\)
\(\displaystyle a \! \left(n +1\right) = -\frac{n^{4}}{12}+\frac{4 n^{3}}{3}-\frac{59 n^{2}}{12}+2 a \! \left(n \right)+\frac{29 n}{3}-7, \quad n \geq 8\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 55\)
\(\displaystyle a \! \left(6\right) = 143\)
\(\displaystyle a \! \left(7\right) = 340\)
\(\displaystyle a \! \left(n +1\right) = -\frac{n^{4}}{12}+\frac{4 n^{3}}{3}-\frac{59 n^{2}}{12}+2 a \! \left(n \right)+\frac{29 n}{3}-7, \quad n \geq 8\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}1 & n =0\text{ or } n =1 \\ 1+\frac{13 \,2^{n}}{4}-\frac{15 n}{2}+\frac{29 n^{2}}{12}-n^{3}+\frac{n^{4}}{12} & \text{otherwise} \end{array}\right.\)
This specification was found using the strategy pack "Row And Col Placements" and has 108 rules.
Found on July 23, 2021.Finding the specification took 12 seconds.
This tree is too big to show here. Click to view tree on new page.
Copy 108 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{4}\! \left(x \right)+F_{49}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{5}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{3}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{8}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{8}\! \left(x \right) &= x\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{33}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right) F_{14}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{12}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{13}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{11}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{15}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{16}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{17}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{21}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{19}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{18}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{29}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{24}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{26}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{8}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{27}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{12}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{31}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{32}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{30}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{11}\! \left(x \right) F_{35}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{36}\! \left(x \right)+F_{44}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{14}\! \left(x \right) F_{37}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{38}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{39}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)+F_{41}\! \left(x \right)+F_{43}\! \left(x \right)\\
F_{40}\! \left(x \right) &= 0\\
F_{41}\! \left(x \right) &= F_{42}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{39}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{38}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{45}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{40}\! \left(x \right)+F_{46}\! \left(x \right)+F_{48}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{47}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{47}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{45}\! \left(x \right)\\
F_{48}\! \left(x \right) &= F_{44}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{49}\! \left(x \right) &= F_{50}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{50}\! \left(x \right) &= F_{51}\! \left(x \right)+F_{62}\! \left(x \right)\\
F_{51}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{52}\! \left(x \right)\\
F_{52}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{53}\! \left(x \right)\\
F_{53}\! \left(x \right) &= F_{54}\! \left(x \right)\\
F_{54}\! \left(x \right) &= F_{55}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{55}\! \left(x \right) &= F_{56}\! \left(x \right)+F_{57}\! \left(x \right)\\
F_{56}\! \left(x \right) &= F_{8}\! \left(x \right)\\
F_{57}\! \left(x \right) &= F_{58}\! \left(x \right)\\
F_{58}\! \left(x \right) &= F_{59}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{59}\! \left(x \right) &= F_{60}\! \left(x \right)+F_{61}\! \left(x \right)\\
F_{60}\! \left(x \right) &= F_{8}\! \left(x \right)\\
F_{61}\! \left(x \right) &= F_{58}\! \left(x \right)\\
F_{62}\! \left(x \right) &= F_{63}\! \left(x \right)+F_{91}\! \left(x \right)\\
F_{63}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{64}\! \left(x \right)\\
F_{64}\! \left(x \right) &= F_{40}\! \left(x \right)+F_{65}\! \left(x \right)+F_{67}\! \left(x \right)\\
F_{65}\! \left(x \right) &= F_{66}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{66}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{64}\! \left(x \right)\\
F_{67}\! \left(x \right) &= F_{68}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{68}\! \left(x \right) &= F_{69}\! \left(x \right)+F_{73}\! \left(x \right)\\
F_{69}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{70}\! \left(x \right)\\
F_{70}\! \left(x \right) &= F_{71}\! \left(x \right)\\
F_{71}\! \left(x \right) &= F_{72}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{72}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{70}\! \left(x \right)\\
F_{73}\! \left(x \right) &= F_{74}\! \left(x \right)+F_{87}\! \left(x \right)\\
F_{74}\! \left(x \right) &= F_{40}\! \left(x \right)+F_{46}\! \left(x \right)+F_{75}\! \left(x \right)\\
F_{75}\! \left(x \right) &= F_{76}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{76}\! \left(x \right) &= F_{77}\! \left(x \right)+F_{81}\! \left(x \right)\\
F_{77}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{78}\! \left(x \right)\\
F_{78}\! \left(x \right) &= F_{79}\! \left(x \right)\\
F_{79}\! \left(x \right) &= F_{8}\! \left(x \right) F_{80}\! \left(x \right)\\
F_{80}\! \left(x \right) &= F_{78}\! \left(x \right)+F_{8}\! \left(x \right)\\
F_{81}\! \left(x \right) &= F_{74}\! \left(x \right)+F_{82}\! \left(x \right)\\
F_{82}\! \left(x \right) &= F_{83}\! \left(x \right)\\
F_{83}\! \left(x \right) &= F_{8}\! \left(x \right) F_{84}\! \left(x \right)\\
F_{84}\! \left(x \right) &= F_{85}\! \left(x \right)+F_{86}\! \left(x \right)\\
F_{85}\! \left(x \right) &= F_{28}\! \left(x \right)\\
F_{86}\! \left(x \right) &= F_{83}\! \left(x \right)\\
F_{87}\! \left(x \right) &= F_{88}\! \left(x \right)\\
F_{88}\! \left(x \right) &= F_{8}\! \left(x \right) F_{89}\! \left(x \right)\\
F_{89}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{90}\! \left(x \right)\\
F_{90}\! \left(x \right) &= F_{88}\! \left(x \right)\\
F_{91}\! \left(x \right) &= F_{92}\! \left(x \right)+F_{97}\! \left(x \right)\\
F_{92}\! \left(x \right) &= F_{40}\! \left(x \right)+F_{93}\! \left(x \right)+F_{95}\! \left(x \right)\\
F_{93}\! \left(x \right) &= F_{8}\! \left(x \right) F_{94}\! \left(x \right)\\
F_{94}\! \left(x \right) &= F_{19}\! \left(x \right)+F_{92}\! \left(x \right)\\
F_{95}\! \left(x \right) &= F_{8}\! \left(x \right) F_{96}\! \left(x \right)\\
F_{96}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{92}\! \left(x \right)\\
F_{97}\! \left(x \right) &= 2 F_{40}\! \left(x \right)+F_{100}\! \left(x \right)+F_{98}\! \left(x \right)\\
F_{98}\! \left(x \right) &= F_{8}\! \left(x \right) F_{99}\! \left(x \right)\\
F_{99}\! \left(x \right) &= F_{53}\! \left(x \right)+F_{97}\! \left(x \right)\\
F_{100}\! \left(x \right) &= F_{101}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{101}\! \left(x \right) &= F_{102}\! \left(x \right)+F_{103}\! \left(x \right)\\
F_{102}\! \left(x \right) &= F_{85}\! \left(x \right)\\
F_{103}\! \left(x \right) &= F_{104}\! \left(x \right)\\
F_{104}\! \left(x \right) &= F_{105}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{105}\! \left(x \right) &= F_{106}\! \left(x \right)+F_{107}\! \left(x \right)\\
F_{106}\! \left(x \right) &= F_{85}\! \left(x \right)\\
F_{107}\! \left(x \right) &= F_{104}\! \left(x \right)\\
\end{align*}\)