Av(1243, 1324, 2314, 2341, 3241)
Generating Function
\(\displaystyle \frac{2 x^{9}-6 x^{8}-4 x^{7}+15 x^{6}-2 x^{5}-28 x^{4}+41 x^{3}-26 x^{2}+8 x -1}{\left(x^{2}+x -1\right) \left(2 x -1\right)^{2} \left(x -1\right)^{4}}\)
Counting Sequence
1, 1, 2, 6, 19, 57, 159, 413, 1013, 2378, 5402, 11975, 26066, 55967, 118932, ...
Implicit Equation for the Generating Function
\(\displaystyle -\left(x^{2}+x -1\right) \left(2 x -1\right)^{2} \left(x -1\right)^{4} F \! \left(x \right)+2 x^{9}-6 x^{8}-4 x^{7}+15 x^{6}-2 x^{5}-28 x^{4}+41 x^{3}-26 x^{2}+8 x -1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 57\)
\(\displaystyle a \! \left(6\right) = 159\)
\(\displaystyle a \! \left(7\right) = 413\)
\(\displaystyle a \! \left(8\right) = 1013\)
\(\displaystyle a \! \left(9\right) = 2378\)
\(\displaystyle a \! \left(n \right) = -\frac{n^{3}}{24}+\frac{5 n^{2}}{8}+\frac{7 a \! \left(n +2\right)}{4}-\frac{5 a \! \left(n +3\right)}{4}+\frac{a \! \left(n +4\right)}{4}-\frac{5 n}{6}-\frac{1}{4}, \quad n \geq 10\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 57\)
\(\displaystyle a \! \left(6\right) = 159\)
\(\displaystyle a \! \left(7\right) = 413\)
\(\displaystyle a \! \left(8\right) = 1013\)
\(\displaystyle a \! \left(9\right) = 2378\)
\(\displaystyle a \! \left(n \right) = -\frac{n^{3}}{24}+\frac{5 n^{2}}{8}+\frac{7 a \! \left(n +2\right)}{4}-\frac{5 a \! \left(n +3\right)}{4}+\frac{a \! \left(n +4\right)}{4}-\frac{5 n}{6}-\frac{1}{4}, \quad n \geq 10\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}1 & n =0\text{ or } n =1 \\ \frac{\left(192 \sqrt{5}-420\right) \left(-\frac{\sqrt{5}}{2}-\frac{1}{2}\right)^{-n}}{60}+\frac{\left(-192 \sqrt{5}-420\right) \left(\frac{\sqrt{5}}{2}-\frac{1}{2}\right)^{-n}}{60}-\frac{n^{3}}{6}+\\n^{2}+\frac{2^{n} n}{4}+\frac{19 n}{6}+9 \,2^{-1+n}+10 & \text{otherwise} \end{array}\right.\)
This specification was found using the strategy pack "Point Placements" and has 116 rules.
Found on January 18, 2022.Finding the specification took 1 seconds.
This tree is too big to show here. Click to view tree on new page.
Copy 116 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{12}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{12}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{10}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{12}\! \left(x \right) &= x\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{21}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{12}\! \left(x \right) F_{16}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{18}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{12}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{19}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{12}\! \left(x \right) F_{14}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{12}\! \left(x \right) F_{13}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{33}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{12}\! \left(x \right) F_{26}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{30}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{28}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{29}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{12}\! \left(x \right) F_{27}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{31}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{12}\! \left(x \right) F_{30}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{34}\! \left(x \right)+F_{35}\! \left(x \right)+F_{75}\! \left(x \right)\\
F_{34}\! \left(x \right) &= 0\\
F_{35}\! \left(x \right) &= F_{12}\! \left(x \right) F_{36}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{37}\! \left(x \right)+F_{56}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{38}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{39}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{12}\! \left(x \right) F_{40}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{41}\! \left(x \right)+F_{44}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{42}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{43}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{12}\! \left(x \right) F_{41}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{45}\! \left(x \right)+F_{54}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{46}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{12}\! \left(x \right) F_{47}\! \left(x \right)\\
F_{47}\! \left(x \right) &= F_{48}\! \left(x \right)+F_{51}\! \left(x \right)\\
F_{48}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{49}\! \left(x \right)\\
F_{49}\! \left(x \right) &= F_{50}\! \left(x \right)\\
F_{50}\! \left(x \right) &= F_{12}\! \left(x \right) F_{28}\! \left(x \right)\\
F_{51}\! \left(x \right) &= F_{45}\! \left(x \right)+F_{52}\! \left(x \right)\\
F_{52}\! \left(x \right) &= F_{53}\! \left(x \right)\\
F_{53}\! \left(x \right) &= F_{12}\! \left(x \right) F_{45}\! \left(x \right)\\
F_{54}\! \left(x \right) &= F_{55}\! \left(x \right)\\
F_{55}\! \left(x \right) &= F_{12}\! \left(x \right) F_{44}\! \left(x \right)\\
F_{56}\! \left(x \right) &= F_{33}\! \left(x \right)+F_{57}\! \left(x \right)\\
F_{57}\! \left(x \right) &= F_{58}\! \left(x \right)\\
F_{58}\! \left(x \right) &= F_{12}\! \left(x \right) F_{59}\! \left(x \right)\\
F_{59}\! \left(x \right) &= F_{60}\! \left(x \right)+F_{63}\! \left(x \right)\\
F_{60}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{61}\! \left(x \right)\\
F_{61}\! \left(x \right) &= F_{62}\! \left(x \right)\\
F_{62}\! \left(x \right) &= F_{12}\! \left(x \right) F_{60}\! \left(x \right)\\
F_{63}\! \left(x \right) &= F_{64}\! \left(x \right)+F_{73}\! \left(x \right)\\
F_{64}\! \left(x \right) &= F_{65}\! \left(x \right)\\
F_{65}\! \left(x \right) &= F_{12}\! \left(x \right) F_{66}\! \left(x \right)\\
F_{66}\! \left(x \right) &= F_{67}\! \left(x \right)+F_{70}\! \left(x \right)\\
F_{67}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{68}\! \left(x \right)\\
F_{68}\! \left(x \right) &= F_{69}\! \left(x \right)\\
F_{69}\! \left(x \right) &= F_{12}\! \left(x \right) F_{31}\! \left(x \right)\\
F_{70}\! \left(x \right) &= F_{64}\! \left(x \right)+F_{71}\! \left(x \right)\\
F_{71}\! \left(x \right) &= F_{72}\! \left(x \right)\\
F_{72}\! \left(x \right) &= F_{12}\! \left(x \right) F_{64}\! \left(x \right)\\
F_{73}\! \left(x \right) &= F_{74}\! \left(x \right)\\
F_{74}\! \left(x \right) &= F_{12}\! \left(x \right) F_{63}\! \left(x \right)\\
F_{75}\! \left(x \right) &= F_{12}\! \left(x \right) F_{76}\! \left(x \right)\\
F_{76}\! \left(x \right) &= F_{77}\! \left(x \right)+F_{84}\! \left(x \right)\\
F_{77}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{78}\! \left(x \right)\\
F_{78}\! \left(x \right) &= F_{34}\! \left(x \right)+F_{79}\! \left(x \right)+F_{83}\! \left(x \right)\\
F_{79}\! \left(x \right) &= F_{12}\! \left(x \right) F_{80}\! \left(x \right)\\
F_{80}\! \left(x \right) &= F_{81}\! \left(x \right)+F_{82}\! \left(x \right)\\
F_{81}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{42}\! \left(x \right)\\
F_{82}\! \left(x \right) &= F_{61}\! \left(x \right)+F_{78}\! \left(x \right)\\
F_{83}\! \left(x \right) &= F_{12}\! \left(x \right) F_{77}\! \left(x \right)\\
F_{84}\! \left(x \right) &= F_{104}\! \left(x \right)+F_{85}\! \left(x \right)\\
F_{85}\! \left(x \right) &= F_{34}\! \left(x \right)+F_{86}\! \left(x \right)+F_{96}\! \left(x \right)\\
F_{86}\! \left(x \right) &= F_{12}\! \left(x \right) F_{87}\! \left(x \right)\\
F_{87}\! \left(x \right) &= F_{88}\! \left(x \right)+F_{92}\! \left(x \right)\\
F_{88}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{89}\! \left(x \right)\\
F_{89}\! \left(x \right) &= F_{90}\! \left(x \right)\\
F_{90}\! \left(x \right) &= F_{12}\! \left(x \right) F_{91}\! \left(x \right)\\
F_{91}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{89}\! \left(x \right)\\
F_{92}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{93}\! \left(x \right)\\
F_{93}\! \left(x \right) &= F_{94}\! \left(x \right)\\
F_{94}\! \left(x \right) &= F_{12}\! \left(x \right) F_{95}\! \left(x \right)\\
F_{95}\! \left(x \right) &= F_{31}\! \left(x \right)+F_{93}\! \left(x \right)\\
F_{96}\! \left(x \right) &= F_{12}\! \left(x \right) F_{97}\! \left(x \right)\\
F_{97}\! \left(x \right) &= F_{101}\! \left(x \right)+F_{98}\! \left(x \right)\\
F_{98}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{99}\! \left(x \right)\\
F_{99}\! \left(x \right) &= F_{100}\! \left(x \right)\\
F_{100}\! \left(x \right) &= F_{12}\! \left(x \right) F_{24}\! \left(x \right)\\
F_{101}\! \left(x \right) &= F_{102}\! \left(x \right)+F_{85}\! \left(x \right)\\
F_{102}\! \left(x \right) &= F_{103}\! \left(x \right)\\
F_{103}\! \left(x \right) &= F_{12}\! \left(x \right) F_{85}\! \left(x \right)\\
F_{104}\! \left(x \right) &= 2 F_{34}\! \left(x \right)+F_{105}\! \left(x \right)+F_{115}\! \left(x \right)\\
F_{105}\! \left(x \right) &= F_{106}\! \left(x \right) F_{12}\! \left(x \right)\\
F_{106}\! \left(x \right) &= F_{107}\! \left(x \right)+F_{111}\! \left(x \right)\\
F_{107}\! \left(x \right) &= F_{108}\! \left(x \right)+F_{42}\! \left(x \right)\\
F_{108}\! \left(x \right) &= F_{109}\! \left(x \right)\\
F_{109}\! \left(x \right) &= F_{110}\! \left(x \right) F_{12}\! \left(x \right)\\
F_{110}\! \left(x \right) &= F_{108}\! \left(x \right)+F_{89}\! \left(x \right)\\
F_{111}\! \left(x \right) &= F_{112}\! \left(x \right)+F_{61}\! \left(x \right)\\
F_{112}\! \left(x \right) &= F_{113}\! \left(x \right)\\
F_{113}\! \left(x \right) &= F_{114}\! \left(x \right) F_{12}\! \left(x \right)\\
F_{114}\! \left(x \right) &= F_{112}\! \left(x \right)+F_{93}\! \left(x \right)\\
F_{115}\! \left(x \right) &= F_{12}\! \left(x \right) F_{84}\! \left(x \right)\\
\end{align*}\)