Av(1243, 1324, 2314, 2341, 3142)
Generating Function
\(\displaystyle -\frac{x^{6}+2 x^{5}-5 x^{4}-6 x^{3}+12 x^{2}-6 x +1}{\left(x -1\right) \left(2 x -1\right) \left(x^{2}-3 x +1\right) \left(x^{2}+x -1\right)}\)
Counting Sequence
1, 1, 2, 6, 19, 57, 164, 458, 1254, 3388, 9071, 24135, 63934, 168834, 444848, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(x -1\right) \left(2 x -1\right) \left(x^{2}-3 x +1\right) \left(x^{2}+x -1\right) F \! \left(x \right)+x^{6}+2 x^{5}-5 x^{4}-6 x^{3}+12 x^{2}-6 x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 57\)
\(\displaystyle a \! \left(6\right) = 164\)
\(\displaystyle a \! \left(n +5\right) = -2 a \! \left(n \right)+5 a \! \left(n +1\right)+4 a \! \left(n +2\right)-11 a \! \left(n +3\right)+6 a \! \left(n +4\right)-1, \quad n \geq 7\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 57\)
\(\displaystyle a \! \left(6\right) = 164\)
\(\displaystyle a \! \left(n +5\right) = -2 a \! \left(n \right)+5 a \! \left(n +1\right)+4 a \! \left(n +2\right)-11 a \! \left(n +3\right)+6 a \! \left(n +4\right)-1, \quad n \geq 7\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}1 & n =0 \\ \frac{\left(-\sqrt{5}+15\right) \left(\frac{3}{2}-\frac{\sqrt{5}}{2}\right)^{-n}}{20}+\frac{\left(\sqrt{5}+15\right) \left(\frac{3}{2}+\frac{\sqrt{5}}{2}\right)^{-n}}{20}+\\\frac{\left(3 \sqrt{5}-5\right) \left(-\frac{\sqrt{5}}{2}-\frac{1}{2}\right)^{-n}}{20}+\frac{\left(-3 \sqrt{5}-5\right) \left(\frac{\sqrt{5}}{2}-\frac{1}{2}\right)^{-n}}{20}-2^{n -1}+1 & \text{otherwise} \end{array}\right.\)
This specification was found using the strategy pack "Point Placements" and has 48 rules.
Found on July 23, 2021.Finding the specification took 5 seconds.
Copy 48 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{8}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{8}\! \left(x \right) &= x\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{13}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{10}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{16}\! \left(x \right)+F_{20}\! \left(x \right)\\
F_{15}\! \left(x \right) &= 0\\
F_{16}\! \left(x \right) &= F_{17}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{19}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{11}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{14}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{13}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{23}\! \left(x \right) F_{45}\! \left(x \right) F_{5}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{32}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{25}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{27}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{29}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{8}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{25}\! \left(x \right)+F_{30}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{31}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{25}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{34}\! \left(x \right) F_{40}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{35}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{36}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{15}\! \left(x \right)+F_{37}\! \left(x \right)+F_{39}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{38}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{36}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{35}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{41}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{42}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{43}\! \left(x \right) F_{45}\! \left(x \right) F_{8}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{44}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{41}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{46}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{47}\! \left(x \right)\\
F_{47}\! \left(x \right) &= F_{45}\! \left(x \right) F_{8}\! \left(x \right)\\
\end{align*}\)