Av(1243, 1324, 2314, 2341, 3124)
Generating Function
\(\displaystyle \frac{-\sqrt{1-4 x}\, x^{3}-\sqrt{1-4 x}\, x^{2}+3 x^{3}+3 x^{2}+\sqrt{1-4 x}-1}{2 \left(x^{2}+x -1\right) x}\)
Counting Sequence
1, 1, 2, 6, 19, 60, 192, 625, 2073, 6999, 24009, 83502, 293865, 1044685, 3746192, ...
Implicit Equation for the Generating Function
\(\displaystyle x \left(x^{2}+x -1\right)^{2} F \left(x
\right)^{2}-\left(x^{2}+x -1\right) \left(3 x^{3}+3 x^{2}-1\right) F \! \left(x \right)+x^{6}+4 x^{5}+5 x^{4}-3 x^{2}-x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 60\)
\(\displaystyle a \! \left(6\right) = 192\)
\(\displaystyle a \! \left(n +6\right) = \frac{2 \left(-1+2 n \right) a \! \left(n \right)}{n +7}+\frac{\left(3+7 n \right) a \! \left(1+n \right)}{n +7}-\frac{2 \left(n -2\right) a \! \left(n +2\right)}{n +7}-\frac{2 \left(15+4 n \right) a \! \left(n +3\right)}{n +7}-\frac{2 \left(n +6\right) a \! \left(n +4\right)}{n +7}+\frac{\left(29+5 n \right) a \! \left(n +5\right)}{n +7}, \quad n \geq 7\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 60\)
\(\displaystyle a \! \left(6\right) = 192\)
\(\displaystyle a \! \left(n +6\right) = \frac{2 \left(-1+2 n \right) a \! \left(n \right)}{n +7}+\frac{\left(3+7 n \right) a \! \left(1+n \right)}{n +7}-\frac{2 \left(n -2\right) a \! \left(n +2\right)}{n +7}-\frac{2 \left(15+4 n \right) a \! \left(n +3\right)}{n +7}-\frac{2 \left(n +6\right) a \! \left(n +4\right)}{n +7}+\frac{\left(29+5 n \right) a \! \left(n +5\right)}{n +7}, \quad n \geq 7\)
This specification was found using the strategy pack "Row Placements Tracked Fusion" and has 73 rules.
Found on July 23, 2021.Finding the specification took 2 seconds.
Copy 73 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{16}\! \left(x \right) F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{4}\! \left(x \right)+F_{64}\! \left(x \right)\\
F_{4}\! \left(x \right) &= F_{5}\! \left(x \right)\\
F_{5}\! \left(x \right) &= F_{16}\! \left(x \right) F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{7}\! \left(x , 1\right)\\
F_{7}\! \left(x , y\right) &= F_{61}\! \left(x , y\right)+F_{8}\! \left(x , y\right)\\
F_{8}\! \left(x , y\right) &= F_{27}\! \left(x , y\right)+F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{10}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right) F_{16}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{17}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{14}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{13}\! \left(x \right) F_{16}\! \left(x \right)\\
F_{16}\! \left(x \right) &= x\\
F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{25}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{16}\! \left(x \right) F_{20}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{22}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{16}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{23}\! \left(x \right)\\
F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)\\
F_{24}\! \left(x \right) &= F_{16}\! \left(x \right) F_{18}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{16}\! \left(x \right) F_{17}\! \left(x \right)\\
F_{27}\! \left(x , y\right) &= F_{28}\! \left(x , y\right)+F_{32}\! \left(x , y\right)\\
F_{28}\! \left(x , y\right) &= F_{29}\! \left(x , y\right)\\
F_{29}\! \left(x , y\right) &= F_{30}\! \left(x , y\right) F_{31}\! \left(x , y\right)\\
F_{30}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{28}\! \left(x , y\right)\\
F_{31}\! \left(x , y\right) &= y x\\
F_{32}\! \left(x , y\right) &= F_{33}\! \left(x \right)+F_{34}\! \left(x , y\right)+F_{36}\! \left(x , y\right)\\
F_{33}\! \left(x \right) &= 0\\
F_{34}\! \left(x , y\right) &= F_{31}\! \left(x , y\right) F_{35}\! \left(x , y\right)\\
F_{35}\! \left(x , y\right) &= F_{10}\! \left(x \right)+F_{32}\! \left(x , y\right)\\
F_{36}\! \left(x , y\right) &= F_{16}\! \left(x \right) F_{37}\! \left(x , y\right)\\
F_{37}\! \left(x , y\right) &= F_{38}\! \left(x , y\right)+F_{41}\! \left(x , y\right)\\
F_{38}\! \left(x , y\right) &= F_{28}\! \left(x , y\right)+F_{39}\! \left(x , y\right)\\
F_{39}\! \left(x , y\right) &= F_{40}\! \left(x , y\right)\\
F_{40}\! \left(x , y\right) &= F_{16}\! \left(x \right) F_{38}\! \left(x , y\right)\\
F_{41}\! \left(x , y\right) &= F_{42}\! \left(x , y\right)+F_{59}\! \left(x , y\right)\\
F_{42}\! \left(x , y\right) &= F_{33}\! \left(x \right)+F_{43}\! \left(x , y\right)+F_{51}\! \left(x , y\right)\\
F_{43}\! \left(x , y\right) &= F_{31}\! \left(x , y\right) F_{44}\! \left(x , y\right)\\
F_{44}\! \left(x , y\right) &= F_{45}\! \left(x \right)+F_{48}\! \left(x , y\right)\\
F_{45}\! \left(x \right) &= F_{46}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{16}\! \left(x \right) F_{47}\! \left(x \right)\\
F_{47}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{45}\! \left(x \right)\\
F_{48}\! \left(x , y\right) &= F_{33}\! \left(x \right)+F_{43}\! \left(x , y\right)+F_{49}\! \left(x , y\right)\\
F_{49}\! \left(x , y\right) &= F_{16}\! \left(x \right) F_{50}\! \left(x , y\right)\\
F_{50}\! \left(x , y\right) &= F_{28}\! \left(x , y\right)+F_{48}\! \left(x , y\right)\\
F_{51}\! \left(x , y\right) &= F_{16}\! \left(x \right) F_{52}\! \left(x , y\right)\\
F_{52}\! \left(x , y\right) &= F_{53}\! \left(x , y\right)+F_{56}\! \left(x , y\right)\\
F_{53}\! \left(x , y\right) &= F_{28}\! \left(x , y\right)+F_{54}\! \left(x , y\right)\\
F_{54}\! \left(x , y\right) &= F_{55}\! \left(x , y\right)\\
F_{55}\! \left(x , y\right) &= F_{16}\! \left(x \right) F_{28}\! \left(x , y\right)\\
F_{56}\! \left(x , y\right) &= F_{42}\! \left(x , y\right)+F_{57}\! \left(x , y\right)\\
F_{57}\! \left(x , y\right) &= F_{58}\! \left(x , y\right)\\
F_{58}\! \left(x , y\right) &= F_{16}\! \left(x \right) F_{42}\! \left(x , y\right)\\
F_{59}\! \left(x , y\right) &= F_{60}\! \left(x , y\right)\\
F_{60}\! \left(x , y\right) &= F_{16}\! \left(x \right) F_{41}\! \left(x , y\right)\\
F_{61}\! \left(x , y\right) &= F_{62}\! \left(x , y\right)\\
F_{62}\! \left(x , y\right) &= F_{16}\! \left(x \right) F_{30}\! \left(x , y\right) F_{63}\! \left(x \right)\\
F_{63}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{9}\! \left(x \right)\\
F_{64}\! \left(x \right) &= F_{16}\! \left(x \right) F_{65}\! \left(x \right)\\
F_{65}\! \left(x \right) &= F_{66}\! \left(x , 1\right)\\
F_{66}\! \left(x , y\right) &= F_{1}\! \left(x \right)+F_{67}\! \left(x , y\right)+F_{68}\! \left(x , y\right)+F_{70}\! \left(x , y\right)\\
F_{67}\! \left(x , y\right) &= F_{31}\! \left(x , y\right) F_{66}\! \left(x , y\right)\\
F_{68}\! \left(x , y\right) &= F_{16}\! \left(x \right) F_{69}\! \left(x , y\right)\\
F_{69}\! \left(x , y\right) &= \frac{F_{66}\! \left(x , y\right) y -F_{66}\! \left(x , 1\right)}{-1+y}\\
F_{70}\! \left(x , y\right) &= F_{71}\! \left(x , y\right)\\
F_{71}\! \left(x , y\right) &= F_{16}\! \left(x \right) F_{72}\! \left(x , y\right)\\
F_{72}\! \left(x , y\right) &= \frac{F_{7}\! \left(x , y\right) y -F_{7}\! \left(x , 1\right)}{-1+y}\\
\end{align*}\)