Av(1243, 1324, 2314, 2341, 2431)
View Raw Data
Generating Function
\(\displaystyle \frac{3 x^{9}-4 x^{8}-15 x^{7}+26 x^{6}+3 x^{5}-50 x^{4}+60 x^{3}-33 x^{2}+9 x -1}{\left(x^{2}+x -1\right) \left(2 x -1\right)^{3} \left(x -1\right)^{3}}\)
Counting Sequence
1, 1, 2, 6, 19, 58, 166, 446, 1138, 2790, 6636, 15426, 35240, 79436, 177212, ...
Implicit Equation for the Generating Function
\(\displaystyle -\left(x^{2}+x -1\right) \left(2 x -1\right)^{3} \left(x -1\right)^{3} F \! \left(x \right)+3 x^{9}-4 x^{8}-15 x^{7}+26 x^{6}+3 x^{5}-50 x^{4}+60 x^{3}-33 x^{2}+9 x -1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 58\)
\(\displaystyle a \! \left(6\right) = 166\)
\(\displaystyle a \! \left(7\right) = 446\)
\(\displaystyle a \! \left(8\right) = 1138\)
\(\displaystyle a \! \left(9\right) = 2790\)
\(\displaystyle a \! \left(n +5\right) = n^{2}-8 a \! \left(n \right)+4 a \! \left(n +1\right)+14 a \! \left(n +2\right)-17 a \! \left(n +3\right)+7 a \! \left(n +4\right)-3 n -2, \quad n \geq 10\)
Explicit Closed Form
\(\displaystyle \left\{\begin{array}{cc}1 & n =0\text{ or } n =1 \\ \frac{\left(576 \sqrt{5}-1280\right) \left(-\frac{\sqrt{5}}{2}-\frac{1}{2}\right)^{-n}}{160}+\frac{\left(-576 \sqrt{5}-1280\right) \left(\frac{\sqrt{5}}{2}-\frac{1}{2}\right)^{-n}}{160}+\\\frac{\left(5 n^{2}+15 n +670\right) 2^{n}}{160}+n^{2}+5 n +12 & \text{otherwise} \end{array}\right.\)

This specification was found using the strategy pack "Point Placements" and has 102 rules.

Found on January 18, 2022.

Finding the specification took 1 seconds.

This tree is too big to show here. Click to view tree on new page.

Copy 102 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{12}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{4}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{5}\! \left(x \right)\\ F_{5}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{12}\! \left(x \right) F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{13}\! \left(x \right)+F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{10}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{11}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{12}\! \left(x \right) &= x\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{21}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{12}\! \left(x \right) F_{16}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{18}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{12}\! \left(x \right)\\ F_{18}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{19}\! \left(x \right)\\ F_{19}\! \left(x \right) &= F_{20}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{12}\! \left(x \right) F_{14}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{12}\! \left(x \right) F_{13}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{35}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{25}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{12}\! \left(x \right) F_{26}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{27}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{28}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{29}\! \left(x \right)+F_{30}\! \left(x \right)+F_{34}\! \left(x \right)\\ F_{29}\! \left(x \right) &= 0\\ F_{30}\! \left(x \right) &= F_{12}\! \left(x \right) F_{31}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{33}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{12}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{28}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{12}\! \left(x \right) F_{24}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{29}\! \left(x \right)+F_{36}\! \left(x \right)+F_{84}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{12}\! \left(x \right) F_{37}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{38}\! \left(x \right)+F_{57}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{39}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{12}\! \left(x \right) F_{41}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{42}\! \left(x \right)+F_{45}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{43}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{44}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{12}\! \left(x \right) F_{42}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{46}\! \left(x \right)+F_{55}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{47}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{12}\! \left(x \right) F_{48}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{49}\! \left(x \right)+F_{52}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{12}\! \left(x \right)+F_{50}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{51}\! \left(x \right)\\ F_{51}\! \left(x \right) &= x^{2}\\ F_{52}\! \left(x \right) &= F_{46}\! \left(x \right)+F_{53}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{54}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{12}\! \left(x \right) F_{46}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{56}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{12}\! \left(x \right) F_{45}\! \left(x \right)\\ F_{57}\! \left(x \right) &= F_{35}\! \left(x \right)+F_{58}\! \left(x \right)\\ F_{58}\! \left(x \right) &= 2 F_{29}\! \left(x \right)+F_{59}\! \left(x \right)+F_{63}\! \left(x \right)\\ F_{59}\! \left(x \right) &= F_{12}\! \left(x \right) F_{60}\! \left(x \right)\\ F_{60}\! \left(x \right) &= F_{61}\! \left(x \right)+F_{62}\! \left(x \right)\\ F_{61}\! \left(x \right) &= F_{39}\! \left(x \right)\\ F_{62}\! \left(x \right) &= F_{58}\! \left(x \right)\\ F_{63}\! \left(x \right) &= F_{12}\! \left(x \right) F_{64}\! \left(x \right)\\ F_{64}\! \left(x \right) &= F_{65}\! \left(x \right)+F_{72}\! \left(x \right)\\ F_{65}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{66}\! \left(x \right)\\ F_{66}\! \left(x \right) &= 2 F_{29}\! \left(x \right)+F_{67}\! \left(x \right)+F_{71}\! \left(x \right)\\ F_{67}\! \left(x \right) &= F_{12}\! \left(x \right) F_{68}\! \left(x \right)\\ F_{68}\! \left(x \right) &= F_{69}\! \left(x \right)+F_{70}\! \left(x \right)\\ F_{69}\! \left(x \right) &= F_{43}\! \left(x \right)\\ F_{70}\! \left(x \right) &= F_{66}\! \left(x \right)\\ F_{71}\! \left(x \right) &= F_{12}\! \left(x \right) F_{65}\! \left(x \right)\\ F_{72}\! \left(x \right) &= F_{73}\! \left(x \right)+F_{82}\! \left(x \right)\\ F_{73}\! \left(x \right) &= F_{74}\! \left(x \right)\\ F_{74}\! \left(x \right) &= F_{12}\! \left(x \right) F_{75}\! \left(x \right)\\ F_{75}\! \left(x \right) &= F_{76}\! \left(x \right)+F_{79}\! \left(x \right)\\ F_{76}\! \left(x \right) &= F_{28}\! \left(x \right)+F_{77}\! \left(x \right)\\ F_{77}\! \left(x \right) &= F_{78}\! \left(x \right)\\ F_{78}\! \left(x \right) &= F_{12}\! \left(x \right) F_{28}\! \left(x \right)\\ F_{79}\! \left(x \right) &= F_{73}\! \left(x \right)+F_{80}\! \left(x \right)\\ F_{80}\! \left(x \right) &= F_{81}\! \left(x \right)\\ F_{81}\! \left(x \right) &= F_{12}\! \left(x \right) F_{73}\! \left(x \right)\\ F_{82}\! \left(x \right) &= F_{83}\! \left(x \right)\\ F_{83}\! \left(x \right) &= F_{12}\! \left(x \right) F_{72}\! \left(x \right)\\ F_{84}\! \left(x \right) &= F_{12}\! \left(x \right) F_{85}\! \left(x \right)\\ F_{85}\! \left(x \right) &= F_{86}\! \left(x \right)+F_{93}\! \left(x \right)\\ F_{86}\! \left(x \right) &= F_{24}\! \left(x \right)+F_{87}\! \left(x \right)\\ F_{87}\! \left(x \right) &= F_{29}\! \left(x \right)+F_{88}\! \left(x \right)+F_{92}\! \left(x \right)\\ F_{88}\! \left(x \right) &= F_{12}\! \left(x \right) F_{89}\! \left(x \right)\\ F_{89}\! \left(x \right) &= F_{90}\! \left(x \right)+F_{91}\! \left(x \right)\\ F_{90}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{43}\! \left(x \right)\\ F_{91}\! \left(x \right) &= F_{66}\! \left(x \right)+F_{87}\! \left(x \right)\\ F_{92}\! \left(x \right) &= F_{12}\! \left(x \right) F_{86}\! \left(x \right)\\ F_{93}\! \left(x \right) &= F_{100}\! \left(x \right)+F_{94}\! \left(x \right)\\ F_{94}\! \left(x \right) &= F_{29}\! \left(x \right)+F_{30}\! \left(x \right)+F_{95}\! \left(x \right)\\ F_{95}\! \left(x \right) &= F_{12}\! \left(x \right) F_{96}\! \left(x \right)\\ F_{96}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{97}\! \left(x \right)\\ F_{97}\! \left(x \right) &= F_{94}\! \left(x \right)+F_{98}\! \left(x \right)\\ F_{98}\! \left(x \right) &= F_{99}\! \left(x \right)\\ F_{99}\! \left(x \right) &= F_{12}\! \left(x \right) F_{94}\! \left(x \right)\\ F_{100}\! \left(x \right) &= 2 F_{29}\! \left(x \right)+F_{101}\! \left(x \right)+F_{67}\! \left(x \right)\\ F_{101}\! \left(x \right) &= F_{12}\! \left(x \right) F_{93}\! \left(x \right)\\ \end{align*}\)