Av(1243, 1324, 2134, 2413, 3142)
View Raw Data
Generating Function
\(\displaystyle -\frac{\left(2 x -1\right) \left(x -1\right)^{2}}{2 x^{5}+x^{4}-6 x^{3}+8 x^{2}-5 x +1}\)
Counting Sequence
1, 1, 2, 6, 19, 56, 160, 456, 1305, 3743, 10739, 30805, 88354, 253411, 726828, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(2 x^{5}+x^{4}-6 x^{3}+8 x^{2}-5 x +1\right) F \! \left(x \right)+\left(2 x -1\right) \left(x -1\right)^{2} = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(n +5\right) = -2 a \! \left(n \right)-a \! \left(n +1\right)+6 a \! \left(n +2\right)-8 a \! \left(n +3\right)+5 a \! \left(n +4\right), \quad n \geq 5\)
Explicit Closed Form
\(\displaystyle \frac{34887 \mathit{RootOf} \left(2 Z^{5}+Z^{4}-6 Z^{3}+8 Z^{2}-5 Z +1, \mathit{index} =1\right)^{-n +1}}{91363}+\frac{34887 \mathit{RootOf} \left(2 Z^{5}+Z^{4}-6 Z^{3}+8 Z^{2}-5 Z +1, \mathit{index} =2\right)^{-n +1}}{91363}+\frac{34887 \mathit{RootOf} \left(2 Z^{5}+Z^{4}-6 Z^{3}+8 Z^{2}-5 Z +1, \mathit{index} =3\right)^{-n +1}}{91363}+\frac{34887 \mathit{RootOf} \left(2 Z^{5}+Z^{4}-6 Z^{3}+8 Z^{2}-5 Z +1, \mathit{index} =4\right)^{-n +1}}{91363}+\frac{34887 \mathit{RootOf} \left(2 Z^{5}+Z^{4}-6 Z^{3}+8 Z^{2}-5 Z +1, \mathit{index} =5\right)^{-n +1}}{91363}+\frac{13359 \mathit{RootOf} \left(2 Z^{5}+Z^{4}-6 Z^{3}+8 Z^{2}-5 Z +1, \mathit{index} =1\right)^{-n -1}}{91363}+\frac{13359 \mathit{RootOf} \left(2 Z^{5}+Z^{4}-6 Z^{3}+8 Z^{2}-5 Z +1, \mathit{index} =2\right)^{-n -1}}{91363}+\frac{13359 \mathit{RootOf} \left(2 Z^{5}+Z^{4}-6 Z^{3}+8 Z^{2}-5 Z +1, \mathit{index} =3\right)^{-n -1}}{91363}+\frac{13359 \mathit{RootOf} \left(2 Z^{5}+Z^{4}-6 Z^{3}+8 Z^{2}-5 Z +1, \mathit{index} =4\right)^{-n -1}}{91363}+\frac{13359 \mathit{RootOf} \left(2 Z^{5}+Z^{4}-6 Z^{3}+8 Z^{2}-5 Z +1, \mathit{index} =5\right)^{-n -1}}{91363}-\frac{20732 \mathit{RootOf} \left(2 Z^{5}+Z^{4}-6 Z^{3}+8 Z^{2}-5 Z +1, \mathit{index} =1\right)^{-n}}{91363}-\frac{20732 \mathit{RootOf} \left(2 Z^{5}+Z^{4}-6 Z^{3}+8 Z^{2}-5 Z +1, \mathit{index} =2\right)^{-n}}{91363}-\frac{20732 \mathit{RootOf} \left(2 Z^{5}+Z^{4}-6 Z^{3}+8 Z^{2}-5 Z +1, \mathit{index} =3\right)^{-n}}{91363}-\frac{20732 \mathit{RootOf} \left(2 Z^{5}+Z^{4}-6 Z^{3}+8 Z^{2}-5 Z +1, \mathit{index} =4\right)^{-n}}{91363}-\frac{20732 \mathit{RootOf} \left(2 Z^{5}+Z^{4}-6 Z^{3}+8 Z^{2}-5 Z +1, \mathit{index} =5\right)^{-n}}{91363}-\frac{17884 \mathit{RootOf} \left(2 Z^{5}+Z^{4}-6 Z^{3}+8 Z^{2}-5 Z +1, \mathit{index} =1\right)^{-n +3}}{91363}-\frac{17884 \mathit{RootOf} \left(2 Z^{5}+Z^{4}-6 Z^{3}+8 Z^{2}-5 Z +1, \mathit{index} =2\right)^{-n +3}}{91363}-\frac{17884 \mathit{RootOf} \left(2 Z^{5}+Z^{4}-6 Z^{3}+8 Z^{2}-5 Z +1, \mathit{index} =3\right)^{-n +3}}{91363}-\frac{17884 \mathit{RootOf} \left(2 Z^{5}+Z^{4}-6 Z^{3}+8 Z^{2}-5 Z +1, \mathit{index} =4\right)^{-n +3}}{91363}-\frac{17884 \mathit{RootOf} \left(2 Z^{5}+Z^{4}-6 Z^{3}+8 Z^{2}-5 Z +1, \mathit{index} =5\right)^{-n +3}}{91363}-\frac{24264 \mathit{RootOf} \left(2 Z^{5}+Z^{4}-6 Z^{3}+8 Z^{2}-5 Z +1, \mathit{index} =1\right)^{-n +2}}{91363}-\frac{24264 \mathit{RootOf} \left(2 Z^{5}+Z^{4}-6 Z^{3}+8 Z^{2}-5 Z +1, \mathit{index} =2\right)^{-n +2}}{91363}-\frac{24264 \mathit{RootOf} \left(2 Z^{5}+Z^{4}-6 Z^{3}+8 Z^{2}-5 Z +1, \mathit{index} =3\right)^{-n +2}}{91363}-\frac{24264 \mathit{RootOf} \left(2 Z^{5}+Z^{4}-6 Z^{3}+8 Z^{2}-5 Z +1, \mathit{index} =4\right)^{-n +2}}{91363}-\frac{24264 \mathit{RootOf} \left(2 Z^{5}+Z^{4}-6 Z^{3}+8 Z^{2}-5 Z +1, \mathit{index} =5\right)^{-n +2}}{91363}\)

This specification was found using the strategy pack "Point Placements" and has 67 rules.

Found on January 18, 2022.

Finding the specification took 1 seconds.

Copy to clipboard:

View tree on standalone page.

Copy 67 equations to clipboard:
\(\begin{align*} F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{1}\! \left(x \right) &= 1\\ F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\ F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\ F_{4}\! \left(x \right) &= x\\ F_{5}\! \left(x \right) &= F_{16}\! \left(x \right)+F_{6}\! \left(x \right)\\ F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\ F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\ F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{13}\! \left(x \right)\\ F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\ F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\ F_{12}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{7}\! \left(x \right)\\ F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\ F_{15}\! \left(x \right) &= F_{13}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{16}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{2}\! \left(x \right)\\ F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{19}\! \left(x \right)+F_{50}\! \left(x \right)\\ F_{18}\! \left(x \right) &= 0\\ F_{19}\! \left(x \right) &= F_{20}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{20}\! \left(x \right) &= F_{21}\! \left(x \right)+F_{31}\! \left(x \right)\\ F_{21}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{25}\! \left(x \right)\\ F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)\\ F_{23}\! \left(x \right) &= F_{24}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{24}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{22}\! \left(x \right)\\ F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)\\ F_{26}\! \left(x \right) &= F_{27}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)\\ F_{28}\! \left(x \right) &= F_{29}\! \left(x \right)+F_{4}\! \left(x \right)\\ F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)\\ F_{30}\! \left(x \right) &= F_{28}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{31}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{36}\! \left(x \right)\\ F_{32}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{19}\! \left(x \right)+F_{33}\! \left(x \right)\\ F_{33}\! \left(x \right) &= F_{34}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{34}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{35}\! \left(x \right)\\ F_{35}\! \left(x \right) &= F_{33}\! \left(x \right)\\ F_{36}\! \left(x \right) &= F_{37}\! \left(x \right)\\ F_{37}\! \left(x \right) &= F_{38}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{38}\! \left(x \right) &= F_{39}\! \left(x \right)\\ F_{39}\! \left(x \right) &= F_{40}\! \left(x \right)+F_{48}\! \left(x \right)\\ F_{40}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{41}\! \left(x \right)+F_{47}\! \left(x \right)\\ F_{41}\! \left(x \right) &= F_{4}\! \left(x \right) F_{42}\! \left(x \right)\\ F_{42}\! \left(x \right) &= F_{43}\! \left(x \right)+F_{45}\! \left(x \right)\\ F_{43}\! \left(x \right) &= F_{4}\! \left(x \right)+F_{44}\! \left(x \right)\\ F_{44}\! \left(x \right) &= F_{26}\! \left(x \right)\\ F_{45}\! \left(x \right) &= F_{40}\! \left(x \right)+F_{46}\! \left(x \right)\\ F_{46}\! \left(x \right) &= F_{37}\! \left(x \right)\\ F_{47}\! \left(x \right) &= F_{2}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{48}\! \left(x \right) &= F_{49}\! \left(x \right)\\ F_{49}\! \left(x \right) &= F_{39}\! \left(x \right) F_{4}\! \left(x \right)\\ F_{50}\! \left(x \right) &= F_{4}\! \left(x \right) F_{51}\! \left(x \right)\\ F_{51}\! \left(x \right) &= F_{52}\! \left(x \right)+F_{55}\! \left(x \right)\\ F_{52}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{53}\! \left(x \right)\\ F_{53}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{41}\! \left(x \right)+F_{54}\! \left(x \right)\\ F_{54}\! \left(x \right) &= F_{4}\! \left(x \right) F_{52}\! \left(x \right)\\ F_{55}\! \left(x \right) &= F_{56}\! \left(x \right)+F_{65}\! \left(x \right)\\ F_{56}\! \left(x \right) &= F_{57}\! \left(x \right)\\ F_{57}\! \left(x \right) &= F_{4}\! \left(x \right) F_{58}\! \left(x \right)\\ F_{58}\! \left(x \right) &= F_{59}\! \left(x \right)+F_{62}\! \left(x \right)\\ F_{59}\! \left(x \right) &= F_{2}\! \left(x \right)+F_{60}\! \left(x \right)\\ F_{60}\! \left(x \right) &= F_{61}\! \left(x \right)\\ F_{61}\! \left(x \right) &= F_{4}\! \left(x \right) F_{59}\! \left(x \right)\\ F_{62}\! \left(x \right) &= F_{56}\! \left(x \right)+F_{63}\! \left(x \right)\\ F_{63}\! \left(x \right) &= F_{64}\! \left(x \right)\\ F_{64}\! \left(x \right) &= F_{4}\! \left(x \right) F_{62}\! \left(x \right)\\ F_{65}\! \left(x \right) &= F_{66}\! \left(x \right)\\ F_{66}\! \left(x \right) &= F_{4}\! \left(x \right) F_{55}\! \left(x \right)\\ \end{align*}\)