Av(1243, 1324, 2134, 2341, 4132)
Generating Function
\(\displaystyle -\frac{2 x^{10}-3 x^{9}-3 x^{8}+7 x^{7}-3 x^{6}-2 x^{4}-4 x^{3}+9 x^{2}-5 x +1}{\left(2 x -1\right) \left(x^{2}+x -1\right) \left(-1+x \right)^{3}}\)
Counting Sequence
1, 1, 2, 6, 19, 53, 131, 305, 681, 1476, 3133, 6552, 13556, 27828, 56794, ...
Implicit Equation for the Generating Function
\(\displaystyle \left(2 x -1\right) \left(x^{2}+x -1\right) \left(-1+x \right)^{3} F \! \left(x \right)+2 x^{10}-3 x^{9}-3 x^{8}+7 x^{7}-3 x^{6}-2 x^{4}-4 x^{3}+9 x^{2}-5 x +1 = 0\)
Recurrence
\(\displaystyle a \! \left(0\right) = 1\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 53\)
\(\displaystyle a \! \left(6\right) = 131\)
\(\displaystyle a \! \left(7\right) = 305\)
\(\displaystyle a \! \left(8\right) = 681\)
\(\displaystyle a \! \left(9\right) = 1476\)
\(\displaystyle a \! \left(10\right) = 3133\)
\(\displaystyle a \! \left(n +3\right) = -2 a \! \left(n \right)-a \! \left(n +1\right)+3 a \! \left(n +2\right)-\frac{\left(n +1\right) \left(n -6\right)}{2}, \quad n \geq 11\)
\(\displaystyle a \! \left(1\right) = 1\)
\(\displaystyle a \! \left(2\right) = 2\)
\(\displaystyle a \! \left(3\right) = 6\)
\(\displaystyle a \! \left(4\right) = 19\)
\(\displaystyle a \! \left(5\right) = 53\)
\(\displaystyle a \! \left(6\right) = 131\)
\(\displaystyle a \! \left(7\right) = 305\)
\(\displaystyle a \! \left(8\right) = 681\)
\(\displaystyle a \! \left(9\right) = 1476\)
\(\displaystyle a \! \left(10\right) = 3133\)
\(\displaystyle a \! \left(n +3\right) = -2 a \! \left(n \right)-a \! \left(n +1\right)+3 a \! \left(n +2\right)-\frac{\left(n +1\right) \left(n -6\right)}{2}, \quad n \geq 11\)
Explicit Closed Form
\(\displaystyle -\left(\left\{\begin{array}{cc}\frac{3}{4} & n =0 \\ \frac{1}{2} & n =1 \\ 1 & n =2\text{ or } n =3\text{ or } n =4 \\ 0 & \text{otherwise} \end{array}\right.\right)+\frac{\left(26 \sqrt{5}-50\right) \left(-\frac{\sqrt{5}}{2}-\frac{1}{2}\right)^{-n}}{20}+\frac{\left(-26 \sqrt{5}-50\right) \left(\frac{\sqrt{5}}{2}-\frac{1}{2}\right)^{-n}}{20}-\frac{n^{2}}{2}+\frac{n}{2}+\frac{15 \,2^{n}}{4}+3\)
This specification was found using the strategy pack "Point Placements" and has 94 rules.
Found on January 18, 2022.Finding the specification took 1 seconds.
This tree is too big to show here. Click to view tree on new page.
Copy 94 equations to clipboard:
\(\begin{align*}
F_{0}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{2}\! \left(x \right)\\
F_{1}\! \left(x \right) &= 1\\
F_{2}\! \left(x \right) &= F_{3}\! \left(x \right)\\
F_{3}\! \left(x \right) &= F_{4}\! \left(x \right) F_{5}\! \left(x \right)\\
F_{4}\! \left(x \right) &= x\\
F_{5}\! \left(x \right) &= F_{17}\! \left(x \right)+F_{6}\! \left(x \right)\\
F_{6}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{7}\! \left(x \right) &= F_{8}\! \left(x \right)\\
F_{8}\! \left(x \right) &= F_{4}\! \left(x \right) F_{9}\! \left(x \right)\\
F_{9}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{13}\! \left(x \right)\\
F_{10}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{11}\! \left(x \right)\\
F_{11}\! \left(x \right) &= F_{12}\! \left(x \right)\\
F_{12}\! \left(x \right) &= F_{10}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{13}\! \left(x \right) &= F_{14}\! \left(x \right)+F_{7}\! \left(x \right)\\
F_{14}\! \left(x \right) &= F_{15}\! \left(x \right)\\
F_{15}\! \left(x \right) &= F_{16}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{16}\! \left(x \right) &= F_{7}\! \left(x \right)\\
F_{17}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{43}\! \left(x \right)\\
F_{18}\! \left(x \right) &= F_{19}\! \left(x \right)\\
F_{19}\! \left(x \right) &= F_{20}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{20}\! \left(x \right) &= F_{10}\! \left(x \right)+F_{21}\! \left(x \right)\\
F_{21}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{22}\! \left(x \right)\\
F_{22}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{24}\! \left(x \right)+F_{40}\! \left(x \right)\\
F_{23}\! \left(x \right) &= 0\\
F_{24}\! \left(x \right) &= F_{25}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{25}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{29}\! \left(x \right)\\
F_{26}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{4}\! \left(x \right)\\
F_{27}\! \left(x \right) &= F_{28}\! \left(x \right)\\
F_{28}\! \left(x \right) &= F_{26}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{29}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{32}\! \left(x \right)\\
F_{30}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{24}\! \left(x \right)+F_{31}\! \left(x \right)\\
F_{31}\! \left(x \right) &= F_{18}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{32}\! \left(x \right) &= F_{33}\! \left(x \right)\\
F_{33}\! \left(x \right) &= F_{34}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{34}\! \left(x \right) &= F_{35}\! \left(x \right)\\
F_{35}\! \left(x \right) &= F_{36}\! \left(x \right)\\
F_{36}\! \left(x \right) &= F_{37}\! \left(x \right) F_{4}\! \left(x \right)\\
F_{37}\! \left(x \right) &= F_{26}\! \left(x \right)+F_{38}\! \left(x \right)\\
F_{38}\! \left(x \right) &= F_{35}\! \left(x \right)+F_{39}\! \left(x \right)\\
F_{39}\! \left(x \right) &= F_{33}\! \left(x \right)\\
F_{40}\! \left(x \right) &= F_{4}\! \left(x \right) F_{41}\! \left(x \right)\\
F_{41}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{42}\! \left(x \right)\\
F_{42}\! \left(x \right) &= F_{36}\! \left(x \right)\\
F_{43}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{44}\! \left(x \right)+F_{81}\! \left(x \right)\\
F_{44}\! \left(x \right) &= F_{4}\! \left(x \right) F_{45}\! \left(x \right)\\
F_{45}\! \left(x \right) &= F_{46}\! \left(x \right)+F_{53}\! \left(x \right)\\
F_{46}\! \left(x \right) &= F_{47}\! \left(x \right)+F_{50}\! \left(x \right)\\
F_{47}\! \left(x \right) &= F_{48}\! \left(x \right)\\
F_{48}\! \left(x \right) &= F_{4}\! \left(x \right) F_{49}\! \left(x \right)\\
F_{49}\! \left(x \right) &= F_{1}\! \left(x \right)+F_{47}\! \left(x \right)\\
F_{50}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{28}\! \left(x \right)+F_{51}\! \left(x \right)\\
F_{51}\! \left(x \right) &= F_{4}\! \left(x \right) F_{52}\! \left(x \right)\\
F_{52}\! \left(x \right) &= F_{11}\! \left(x \right)+F_{50}\! \left(x \right)\\
F_{53}\! \left(x \right) &= F_{54}\! \left(x \right)+F_{58}\! \left(x \right)\\
F_{54}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{44}\! \left(x \right)+F_{55}\! \left(x \right)\\
F_{55}\! \left(x \right) &= F_{4}\! \left(x \right) F_{56}\! \left(x \right)\\
F_{56}\! \left(x \right) &= F_{18}\! \left(x \right)+F_{57}\! \left(x \right)\\
F_{57}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{24}\! \left(x \right)+F_{55}\! \left(x \right)\\
F_{58}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{33}\! \left(x \right)+F_{59}\! \left(x \right)+F_{77}\! \left(x \right)\\
F_{59}\! \left(x \right) &= F_{4}\! \left(x \right) F_{60}\! \left(x \right)\\
F_{60}\! \left(x \right) &= F_{61}\! \left(x \right)+F_{68}\! \left(x \right)\\
F_{61}\! \left(x \right) &= F_{62}\! \left(x \right)+F_{65}\! \left(x \right)\\
F_{62}\! \left(x \right) &= F_{63}\! \left(x \right)\\
F_{63}\! \left(x \right) &= F_{4}\! \left(x \right) F_{64}\! \left(x \right)\\
F_{64}\! \left(x \right) &= F_{4}\! \left(x \right)+F_{62}\! \left(x \right)\\
F_{65}\! \left(x \right) &= F_{66}\! \left(x \right)\\
F_{66}\! \left(x \right) &= F_{4}\! \left(x \right) F_{67}\! \left(x \right)\\
F_{67}\! \left(x \right) &= F_{27}\! \left(x \right)+F_{65}\! \left(x \right)\\
F_{68}\! \left(x \right) &= F_{69}\! \left(x \right)+F_{73}\! \left(x \right)\\
F_{69}\! \left(x \right) &= 2 F_{23}\! \left(x \right)+F_{59}\! \left(x \right)+F_{70}\! \left(x \right)\\
F_{70}\! \left(x \right) &= F_{4}\! \left(x \right) F_{71}\! \left(x \right)\\
F_{71}\! \left(x \right) &= F_{30}\! \left(x \right)+F_{72}\! \left(x \right)\\
F_{72}\! \left(x \right) &= F_{70}\! \left(x \right)\\
F_{73}\! \left(x \right) &= F_{74}\! \left(x \right)\\
F_{74}\! \left(x \right) &= F_{4}\! \left(x \right) F_{75}\! \left(x \right)\\
F_{75}\! \left(x \right) &= F_{32}\! \left(x \right)+F_{76}\! \left(x \right)\\
F_{76}\! \left(x \right) &= F_{74}\! \left(x \right)\\
F_{77}\! \left(x \right) &= F_{4}\! \left(x \right) F_{78}\! \left(x \right)\\
F_{78}\! \left(x \right) &= F_{22}\! \left(x \right)+F_{79}\! \left(x \right)\\
F_{79}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{33}\! \left(x \right)+F_{77}\! \left(x \right)+F_{80}\! \left(x \right)\\
F_{80}\! \left(x \right) &= 0\\
F_{81}\! \left(x \right) &= F_{4}\! \left(x \right) F_{82}\! \left(x \right)\\
F_{82}\! \left(x \right) &= F_{41}\! \left(x \right)+F_{83}\! \left(x \right)\\
F_{83}\! \left(x \right) &= F_{84}\! \left(x \right)+F_{88}\! \left(x \right)\\
F_{84}\! \left(x \right) &= F_{23}\! \left(x \right)+F_{24}\! \left(x \right)+F_{85}\! \left(x \right)\\
F_{85}\! \left(x \right) &= F_{4}\! \left(x \right) F_{86}\! \left(x \right)\\
F_{86}\! \left(x \right) &= F_{41}\! \left(x \right)+F_{87}\! \left(x \right)\\
F_{87}\! \left(x \right) &= F_{84}\! \left(x \right)\\
F_{88}\! \left(x \right) &= F_{89}\! \left(x \right)\\
F_{89}\! \left(x \right) &= F_{4}\! \left(x \right) F_{90}\! \left(x \right)\\
F_{90}\! \left(x \right) &= F_{91}\! \left(x \right)+F_{93}\! \left(x \right)\\
F_{91}\! \left(x \right) &= F_{92}\! \left(x \right)\\
F_{92}\! \left(x \right) &= x^{2}\\
F_{93}\! \left(x \right) &= F_{89}\! \left(x \right)\\
\end{align*}\)